millionsofluo / FakeLPRLinks
基于人造车牌和caffe多标签分类的端到端中文车牌识别
☆36Updated 2 months ago
Alternatives and similar repositories for FakeLPR
Users that are interested in FakeLPR are comparing it to the libraries listed below
Sorting:
- A simple code for creating licence plate images and train e2e network☆149Updated 6 years ago
- Script to train Hyperlpr(https://github.com/zeusees/HyperLPR)☆129Updated 5 years ago
- Multi-line license plate recognition☆76Updated 6 years ago
- 基于RetinaFace的目标检测方法,适用于人脸、缺陷、小目标、行人等☆110Updated 5 years ago
- A tool for generating Chinese license plate dataset for plate detecting☆74Updated 7 years ago
- 使用 "Darknet yolov3-tiny" 进行车牌识别☆90Updated 6 years ago
- 基于深度学习高性能中文车牌识别 (python实现)☆25Updated 6 years ago
- End to End Chinese License Plate Recognition☆81Updated 6 years ago
- MNN demo of Strongeryolo, including channel pruning, android support...☆104Updated 5 years ago
- 华为海思hi系列芯片使用的NNIE推理框架教程☆61Updated last year
- ☆67Updated 5 years ago
- yolov5 nine hi3516 hi3519 object detect real-time☆42Updated 4 years ago
- this is a crawler which is used to download images from baidu and biying☆30Updated 6 years ago
- centernet_mobilenetv2 inference by ncnn☆64Updated 5 years ago
- 基于SSD+Resnet+CTC的中文车牌检测识别☆36Updated 5 years ago
- ☆141Updated 6 years ago
- ☆15Updated 5 years ago
- 人员佩戴口罩检测数据集☆83Updated 5 years ago
- 轻量级的车牌检测项目(支持车牌四角定位、矫正对齐)☆168Updated last year
- train mtcnn head detector☆90Updated 6 years ago
- Face Recognization System By MTCNN & Insightface☆48Updated 6 years ago
- 生成车牌识别数据集☆138Updated 2 years ago
- Recurrent mobilenet based on darknet☆40Updated 6 years ago
- Generate the fake Chinese license plate images for detection & recognition☆115Updated 5 years ago
- MTCNN Pytorch implementation☆33Updated 6 years ago
- Deep Head(face) Pose Estimation☆42Updated 5 years ago
- 车牌识别,基于HyperLPR实现,修改模型调用方法,使用caffe+tensorRT实现GPU加速,修改了车牌检测模型☆18Updated 3 years ago
- provide pytorch model and ncnn model☆76Updated 5 years ago
- MTCNN light + SORT tracking☆43Updated 5 years ago
- 完整版caffe-cpp实现☆55Updated 5 years ago