jmu201521121021 / FaceDetector-Base-Yolov3-sppLinks
☆67Updated 6 years ago
Alternatives and similar repositories for FaceDetector-Base-Yolov3-spp
Users that are interested in FaceDetector-Base-Yolov3-spp are comparing it to the libraries listed below
Sorting:
- use TensorRT accelerate yolo3☆121Updated 6 years ago
- train mtcnn head detector☆89Updated 6 years ago
- 设计的轻量级RFB进行行人检测,AP达到0.7993,参数量仅有3.1MB,200 FPS☆174Updated 6 years ago
- MNN demo of Strongeryolo, including channel pruning, android support...☆103Updated 6 years ago
- Darknet2ncnn converts the darknet model to the ncnn model☆158Updated 5 years ago
- Choose the classes you want from some public datasets and make it into voc format☆28Updated 7 years ago
- mtcnn python implementation based on Caffe framework☆29Updated 7 years ago
- implementation of ncnn's mobileFacenet☆197Updated 6 years ago
- MTCNN Pytorch implementation☆34Updated 6 years ago
- 完整版caffe-cpp实现☆55Updated 6 years ago
- 基于CenterNet训练的目标检测&人脸对齐&姿态估计模型☆287Updated 4 years ago
- A simple code for creating licence plate images and train e2e network☆149Updated 6 years ago
- Multi-line license plate recognition☆76Updated 6 years ago
- 对比ZQCNN-MTCNN与libfacedetection☆148Updated 6 years ago
- provide pytorch model and ncnn model☆77Updated 5 years ago
- ☆91Updated 7 years ago
- yoloface大礼包 使用pytroch实现的基于yolov3的轻量级人脸检测(包含关键点)☆300Updated 3 years ago
- 加入关键点的darknet训练框架,轻量级的人脸检测,支持ncnn推理☆214Updated 5 years ago
- a demo to use insightface☆96Updated 6 years ago
- ☆142Updated 7 years ago
- An experiment of transferring backbone of yolov3 into mobilenetv3☆104Updated 6 years ago
- MTCNN implement by tensorflow. Easy to training and testing.☆43Updated 8 years ago
- TensorRT for Yolov3☆48Updated 6 years ago
- convert your yolov3-tiny model to trt model☆91Updated 5 years ago
- Using MTCNN and MobileFaceNet on Face Recognition☆67Updated 6 years ago
- A windows caffe implementation of YOLO detection network☆210Updated 7 years ago
- A keras version of real-time object detection network : mobilenet_v2_ssdlite☆80Updated 5 years ago
- 重新设计的RFBNet300,模型参数量只有0.99MB,AP达到0.78,200FPS☆100Updated 6 years ago
- 基于人脸关键区域提取的人脸识别(LFW:99.82%+ CFP_FP:98.50%+ AgeDB30:98.25%+)☆276Updated 4 years ago
- 适用于移动端的人脸识别模型,计算量与mobilefacenet相同,但megaface上提升了2%+☆232Updated 5 years ago