megagonlabs / vecscanLinks
☆50Updated last year
Alternatives and similar repositories for vecscan
Users that are interested in vecscan are comparing it to the libraries listed below
Sorting:
- Preferred Generation Benchmark☆83Updated 3 weeks ago
- ☆85Updated 2 years ago
- 【2024年版】BERTによるテキスト分類☆29Updated last year
- NLP2024 チュートリアル3 作って学ぶ日本語大規模言語モデル - 環境構築手順とソースコード / NLP2024 Tutorial 3: Practicing how to build a Japanese large-scale language model - E…☆112Updated last year
- LLMとLoRAを用いたテキスト分類☆97Updated 2 years ago
- Mecab + NEologd + Docker + Python3☆36Updated 3 years ago
- 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器☆140Updated 5 months ago
- Japanese Language Model Financial Evaluation Harness☆75Updated 2 months ago
- ☆181Updated 9 months ago
- alpacaデータセットを日本語化したものです☆89Updated 2 years ago
- ☆26Updated 9 months ago
- ☆34Updated 5 years ago
- DistilBERT model pre-trained on 131 GB of Japanese web text. The teacher model is BERT-base that built in-house at LINE.☆45Updated 2 years ago
- Exploring Japanese SimCSE☆68Updated last year
- Japanese-BPEEncoder☆41Updated 3 years ago
- 【2023年版】BERTによるテキスト分類☆236Updated last year
- An integrated Japanese analyzer based on foundation models☆133Updated 3 weeks ago
- デジタル化資料OCRテキスト化事業において作成されたOCR学習用データセット☆74Updated last year
- The evaluation scripts of JMTEB (Japanese Massive Text Embedding Benchmark)☆68Updated last week
- ☆19Updated 2 years ago
- ☆141Updated 2 years ago
- Japanese synonym library☆53Updated 3 years ago
- GPTがYouTuberをやります☆62Updated last year
- 🛥 Vaporetto is a fast and lightweight pointwise prediction based tokenizer. This is a Python wrapper for Vaporetto.☆20Updated 2 months ago
- Finding all pairs of similar documents time- and memory-efficiently☆61Updated 4 months ago
- Viterbi-based accelerated tokenizer (Python wrapper)☆43Updated 11 months ago
- General-purpose Swich transformer based Japanese language model☆117Updated last year
- ☆31Updated 10 months ago
- ボケて電笑戦 (bokete DENSHOSEN) Workshop☆42Updated 3 years ago
- ディープラーニングモデルの性能を体系的に最大化するためのプレイブック☆188Updated 2 years ago