lisj1211 / Conformer
基于Pytorch的Conformer语音识别模型实现
☆8Updated last year
Related projects ⓘ
Alternatives and complementary repositories for Conformer
- 使用python进行语音识别☆138Updated 2 years ago
- Pytorch实现的流式与非流式的自动语音识别框架,同时兼容在线和离线识别,目前支持Conformer、Squeezeformer、DeepSpeech2模型,支持多种数据增强方法。☆624Updated this week
- 端到端中文语音识别☆84Updated 3 months ago
- An minimal Seq2Seq example of Automatic Speech Recognition (ASR) based on Transformer☆47Updated 6 months ago
- 使用Tensorflow实现声纹识别☆293Updated 5 months ago
- 语音识别理论、论文和PPT☆586Updated 3 months ago
- 一个执着于让CPU\端侧-Model逼近GPU-Model性能的项目,CPU上的实时率(RTF)小于0.1☆461Updated last month
- Production First and Production Ready End-to-End Keyword Spotting Toolkit☆463Updated 3 months ago
- The Pytorch implementation of sound classification supports EcapaTdnn, PANNS, TDNN, Res2Net, ResNetSE and other models, as well as a vari…☆420Updated this week
- The dataset of Speech Recognition☆385Updated 4 months ago
- 基于Tensorflow实现声音分类,博客地址:☆95Updated 4 years ago
- 说话人识别(声纹识别)算法的Python实现。包括GMM(已完成)、GMM-UBM、ivector、基于深度学习的声纹识别(self-attention已完成)。☆77Updated last year
- 基于Kersa实现的声纹识别模型☆130Updated 2 months ago
- 基于Pytorch实现的语音情感识别☆134Updated 2 months ago
- 基于深度学习的普通话语音识别☆15Updated 5 years ago
- 利用Python+TensorFlow实现语音识别☆46Updated 6 years ago
- 本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法☆230Updated this week
- ☆936Updated last week
- ASR中文语音识别☆31Updated 5 years ago
- This project uses a variety of advanced voiceprint recognition models such as EcapaTdnn, ResNetSE, ERes2Net, CAM++, etc. It is not exclud…☆812Updated this week
- 把代码提交到github上。☆14Updated 4 years ago
- Audio Split 基于双门限法的语音端点检测及语音分割☆127Updated 4 years ago
- 针对CN-Celeb数据集的基于ECAPA-TDNN的说话人识别的pytorch实现☆10Updated last year
- transformer的 encoder-decoder结构基于tensorflow实现的中文语音识别项目☆31Updated 3 years ago
- 基于PaddlePaddle实现端到端中文语音识别,从入门到实战,超简单的入门案例,超实用的企业项目。支持当前最流行的DeepSpeech2、Conformer、Squeezeformer模型☆819Updated this week
- 基于卷积神经网络的语音识别声学模型的研究☆171Updated 5 years ago
- 基于PaddlePaddle实现的语音识别,中文语音识别。项目完善,识别效果好。支持Windows,Linux下训练和预测,支持Nvidia Jetson开发板预测。☆682Updated this week
- A No-Recurrence Sequence-to-Sequence Model for Speech Recognition☆373Updated 2 years ago
- 中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。☆269Updated 3 years ago
- Listen, attend and spell Model and a Chinese Mandarin Pretrained model (中文-普通话 ASR模型)☆121Updated last year