liangyimingcom / Use-SageMaker_XGBoost-convert-Time-Series-into-Supervised-Learning-for-predictive-maintenanceLinks
使用SageMaker+XGBoost,将时间序列转换为监督学习,完成预测性维护的实践
☆84Updated 4 years ago
Alternatives and similar repositories for Use-SageMaker_XGBoost-convert-Time-Series-into-Supervised-Learning-for-predictive-maintenance
Users that are interested in Use-SageMaker_XGBoost-convert-Time-Series-into-Supervised-Learning-for-predictive-maintenance are comparing it to the libraries listed below
Sorting:
- 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer☆126Updated 4 years ago
- Sequential data using RNN (LSTM, GRU, etc) CNN and RCNN. Adaptable to variable length input sequence.☆60Updated 2 years ago
- Official implementation of "WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series Forecasting" (ICASSP 2024)☆47Updated last year
- 基于keras实现的transformer☆74Updated 4 years ago
- 本项目使用深度学习、时间序列模型、强化学习PPO算法,实现期货的量化交易☆72Updated 2 years ago
- This project is to explore high-frequency model and strategy. You will expect high-frequency features mining, ml/dl models, and hf tradin…☆21Updated 4 years ago
- Official implementation of "TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting" (ICML 2025)☆159Updated 2 months ago
- Kaggle M5 competition, ranked 292/5589 (top 5%).☆11Updated 3 years ago
- Tensorflow环境下,基于CNN算法,KD99与网络数据训练集共3000w数据训练,在19w数据与1w攻检验下,模型准确率为92.8%.☆64Updated 3 years ago
- Attention Feature Fusion base on spatial-temporal Graph Convolutional Network(AFFGCN)☆35Updated 9 months ago
- Official implementation of "Periodicity Decoupling Framework for Long-term Series Forecasting" (ICLR 2024)☆133Updated last year
- 基于国内大学构造的neo4j知识图谱,并进行简单问答,帮助了解大学,填报高考志愿☆55Updated 3 years ago
- 自动化可转债之旅☆43Updated 5 months ago
- ☆37Updated 4 years ago
- DGDATA: Deep Generative Domain Adaptation with Temporal Relation Attention Mechanism for Cross-User Activity Recognition☆9Updated last year
- Human Activity Recognition by Sensor on Smartphone☆42Updated 5 years ago
- code for ICLR 2024 paper MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process☆38Updated last year
- spinesTS, a powerful toolset for time series prediction, is one of the cornerstones of PipelineTS.☆46Updated last year
- ☆33Updated last year
- This data set contains flow-based network security data sets extracted from satellite networks and terrestrial networks. We named the dat…☆24Updated 4 years ago
- 个人仓库,存放玩具☆18Updated 3 years ago
- 预问诊定制AI,可以从电子病历学习临床经验,自动与患者对话诊断并解释病情,提高医患沟通书写病历的效率。微信小程序扫码即用。☆45Updated 4 years ago
- A Python library for Gene–environment interaction analysis via deep learning☆157Updated last month
- ISSRE'20: Unsupervised Detection of Microservice Trace Anomalies through Service-Level Deep Bayesian Networks☆277Updated 2 years ago
- Predict stock prices using Long Short-Term Memory (LSTM) networks.☆54Updated last year
- 🌟Learning Hierarchical Time Series Data Augmentation Invariances via Contrastive Supervision for Human Activity Recognition☆8Updated last year
- Optimisation of wastewater treatment strategies based on mixed integer linear programming☆11Updated 5 years ago
- A parser for pdf that can extract paragraphs, tables and pictures (PDF解析器)☆47Updated last year
- The project is a framework for quantitative trading of financial assets.☆34Updated 4 years ago
- SFMGTL for corss-city knowledge transfer☆19Updated 10 months ago