lc-sysbs / alpha101-new
基于华泰研报对原alpha101代码进行简化和拓展
☆42Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for alpha101-new
- 基于万矿平台,对alpha101因子进行测试并构造多因子策略☆83Updated 5 years ago
- A risk evaluation program that follows BARRA's CNE6 and USE4 risk model to predict the risk and distribution of factors in a portfolio. C…☆57Updated 3 years ago
- 多因子模型相关☆21Updated 3 years ago
- 沪深300指数增强模型☆75Updated 5 years ago
- 因子构建、单因子测试☆66Updated 3 years ago
- 一些研报的复现☆11Updated 6 years ago
- 获取经典的量化多因子模型数据☆62Updated 3 years ago
- 沪深300指数纯因子组合构建☆48Updated 5 years ago
- 一个简单的量化研究框架,具备基本的数据获取、因子分析、机器学习、回测及结果分析功能☆40Updated 2 years ago
- 复现华泰证券《强化学习初探与DQN择时》研报中的DQN模型与效果☆26Updated 2 years ago
- 改进gplearn,主要使用在股票公式挖掘☆90Updated 4 years ago
- Backtrader量化策略研报复现☆25Updated 2 years ago
- An internship project: Implement Barra model to take risk or style factor attribution based on multi-factor model.☆63Updated 6 years ago
- High frequency factors based on order and trade data.☆32Updated 11 months ago
- stock☆80Updated 3 years ago
- BackTrader多因子回测框架 (Multi-factors backtesting framework for BackTrader)☆92Updated 2 years ago
- 量化研究-多因子模型☆18Updated last year
- factorset: 提供中国A股市场因子集合,包含各类常用及特异因子计算方法,持续更新中。提供轻量级因子计算框架,高可扩展。持续更新中。☆38Updated 6 years ago
- Python Data Analysis and Financial Calculation☆63Updated 5 years ago
- 多因子策略回测框架☆31Updated 5 years ago
- 根据20170925-华泰期货-CTA量化策略因子系列(二):动量因子研报进行复现☆18Updated last year
- ☆15Updated 3 years ago
- 基于基因表达式规划算法的因子挖掘☆25Updated 3 years ago
- 多因子选股(股票) ,基于Fama三因子构成的多因子策略☆74Updated 6 years ago
- Quool, a quantum financial tool, supporting native file data access, database access, crawler data access, and backtest together with ana…☆11Updated 2 months ago
- 以wind为数据源的基金单期brinson业绩归因☆75Updated 4 years ago
- Barra Multifactor Model☆135Updated 4 years ago
- Performance analysis of predictive (alpha) stock factors☆29Updated 3 years ago
- It is suitable for beginners☆44Updated 4 years ago
- 本文通过gplearn模型,结合遗传算法中的遗传规划方法生成因子。这里因子生成基于simple-backtest中的简单回测系统,主要针对股指期货操作。☆102Updated 10 months ago