kr-prince / mRMRLinks
This is an App developed in Python to implement the algorithm for minimum redundancy maximum ralevance. The formulation was based on a research paper from Chris Ding and Hanchuan Peng (Minimum Redundancy Feature Selection from Microarray Gene Expression Data).
☆13Updated 6 years ago
Alternatives and similar repositories for mRMR
Users that are interested in mRMR are comparing it to the libraries listed below
Sorting:
- Implementations of various feature selection methods☆24Updated 4 years ago
- Prognostically Relevant Subtypes and Survival Prediction for Breast Cancer Based on Multimodal Genomics Data☆29Updated 5 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- feature selections and extractions☆88Updated 11 months ago
- ☆15Updated 4 years ago
- 集成学习Stacking方法详解☆75Updated 5 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- Theano implementation of Cost-Sensitive Deep Neural Networks☆26Updated 7 years ago
- Multilayer recursive feature elimination based on embedded genetic algorithm for cancer classification☆15Updated 6 years ago
- Implementing sparse autoencoder for MNIST data classification using keras and tensorflow☆23Updated 6 years ago
- 基于遗传算法的特征选择☆128Updated 5 years ago
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆107Updated 4 years ago
- 卷积神经网络提取特征并用于SVM//www.cnblogs.com/chuxiuhong/p/6132814.html☆15Updated 7 years ago
- Feature selection problem is one of the most significant issues in data classification. The purpose of feature selection is selection of …☆10Updated 5 years ago
- This repository is codeabout cnn with xgboost☆31Updated 7 years ago
- 类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容☆36Updated 4 years ago
- 使用遗传算法结合决策树做特征选择/Using genetic algorithm for feature selection with decision tree☆25Updated 6 years ago
- Learning and Recording☆34Updated 5 years ago
- A convolutional autoencoder for feature extraction, with an SVM for image classification.☆11Updated 6 years ago
- Autoencoders - a deep neural network was used for feature extraction followed by clustering of the "Cancer" dataset using k-means techni…☆13Updated 7 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- 数据预处理之缺失值处理,特征选择☆21Updated 6 years ago
- ☆18Updated 5 years ago
- Weighted LSSVM for regression☆38Updated 6 years ago
- Optimizing k-means++ initialization using PSO☆17Updated 9 years ago
- XGB、LSTM、KNNR、SVR预测☆13Updated 5 months ago
- A Python 2 implementation of Fuzzy C Means Clustering algorithm.☆50Updated 4 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆116Updated 4 years ago
- Creating tabular GAN on credit card dataset☆20Updated 5 years ago
- 本项目开发了一个机器学习和深度学习的训练工具。该训练工具基于sklearn和pytorch,不仅支持常规训练、交叉验证训练,还支持贝叶斯搜索参数,并可随时自动保存训练模型和日志。☆12Updated last year