kegumingxin422 / coTrainingLinks
在大量标注情感的英文语料与大量未标注情感的中文语料,对给定中文语料进行情感分析。
☆30Updated 7 years ago
Alternatives and similar repositories for coTraining
Users that are interested in coTraining are comparing it to the libraries listed below
Sorting:
- SVM, FastText, TextCNN, BiGRU, CNN-BiGRU在短分本分类上的对比☆87Updated 7 years ago
- ☆132Updated 7 years ago
- 细粒度情感分析repository1:Wai Mai Opinion Miner,细粒度情感分析系统GUI demo。☆113Updated 9 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆153Updated 7 years ago
- 基于TextRank和WordNet的中英文单文档自动摘要☆63Updated 10 years ago
- A simple documentary topic analysis implement based on traditional K-means and LDA which can achieve a not-bad result. 基于Kmeans与Lda模型的多文…☆246Updated 7 years ago
- AI100文本分类竞赛代码。从传统机器学习到深度学习方法的测试☆255Updated 8 years ago
- Sentence Distance☆55Updated 7 years ago
- 结合python一起学习自然语言处理 (nlp): 语言模型、HMM、PCFG、Word2vec、完形填空式阅读理解任务、朴素贝叶斯分类器、TFIDF、PCA、SVD☆240Updated 7 years ago
- 个人代码/项目仓库(具体请看子目录下的README.md)。自取请注明出处,尊重原创,O(∩_∩)O谢谢☆44Updated 7 years ago
- 使用word2vec进行中文词 向量的 训练☆91Updated 7 years ago
- implement some fancy text classification models by using keras☆98Updated 7 years ago
- 细粒度情感分析repository2:细粒度情感分析接口,aspect-based sentiment analysis based on HMM.☆45Updated 9 years ago
- Hierarchical BiLSTM CNN using Keras☆78Updated 7 years ago
- 2018“云移杯- 景区口碑评价分值预测☆30Updated 7 years ago
- 练习题︱基于今日头条开源数据的文本挖掘☆83Updated 7 years ago
- ☆75Updated 7 years ago
- 2017知乎看山杯比赛,我的代码。☆62Updated 8 years ago
- using jieba and doc2vec to implement sentiment analysis for Chinese docs☆79Updated 7 years ago
- CCL2018客服领域用户意图分类冠军1st方案☆149Updated 3 years ago
- 中文文本分类,使用搜狗文本分类语料库☆125Updated 9 years ago
- cnn+word2vec做文本分类☆24Updated 9 years ago
- CHIP2018评测任务2,平安医疗科技智能患者健康咨询问句匹配大赛baseline,BiLSTM+特征工程计算相似性,10折交叉验证平均投票做bagging,F1值0.83左右,rank16。☆19Updated 7 years ago
- 利用Doc2Vec计算文本相似度☆138Updated 7 years ago
- 新闻上的文本分类:机器学习大乱斗☆180Updated 6 years ago
- semantic analysis using word2vector, doc2vector,lstm and other method. mainly for text similarity analysis.☆156Updated 8 years ago
- 用机器学习算法实现了一种有监督的句子对匹配方法,使用的机器学习分类算法有:逻辑回归(LR)、SVM、GBDT和随机森林(RandomForest),使用的工具是Sklearn。☆29Updated 8 years ago
- BDCI 2018 汽车行业用户观点主题及情感识别 决赛一等奖方案☆432Updated 7 years ago
- 《实体数据挖掘与知识图谱构建》一书的代码和实验数据。☆43Updated 10 years ago
- 依据香港中文大学设计的规则系统,先用小样本评论建立初始关键词库,再结合18种句式逐条匹配评论,能够快速准确地识别评论对象及情感极性。经多次迭代优化关键词库后,达到较高准确率的基础上,使用Tableau进一步分析数据,识别出客户集中关注的商品属性、普遍好评差评的商品属性;通过…☆57Updated 8 years ago