jcchao / deeplearning-for-quant
本项目为深度学习在多因子量化选股中的一种实践
☆95Updated 6 years ago
Alternatives and similar repositories for deeplearning-for-quant:
Users that are interested in deeplearning-for-quant are comparing it to the libraries listed below
- 基于机器学习方法构建多因子选股模型:RandomForest, GBDT, Adaboots, xgboost,MLP, Linear Model, LSTM☆196Updated 4 years ago
- 基于万矿平台,对alpha101因子进行测试并构造多因子策略☆91Updated 5 years ago
- 因子回测框架☆109Updated last year
- 量化开发 多因子选股模型☆129Updated 6 years ago
- 因子构建、单因子测试☆69Updated 3 years ago
- 本文通过gplearn模型,结合遗传算法中的遗传规划方法生成因子。这里因子生成基于simple-backtest中的简单回测系统,主要针对股指期货操作。☆119Updated last year
- BackTrader多因子回测框架 (Multi-factors backtesting framework for BackTrader)☆107Updated 3 years ago
- 一个简单的量化研究框架,具备基本的数据获取、因子分析、机器学习、回测及结果分析功能☆45Updated 2 years ago
- 沪深300指数增强模型☆78Updated 5 years ago
- Barra Multifactor Model☆139Updated 5 years ago
- 多因子选股(股票) ,基于Fama三因子构成的多因子策略☆76Updated 7 years ago
- ☆190Updated 4 years ago
- Provide risk forecasts by Barra China Equity Model☆162Updated 6 years ago
- 我的多因子模型、量化投资沙盒☆147Updated last year
- 多因子指数增强策略/多因子全流程实现☆302Updated last year
- 使用Python复现Black-Litterman模型。Black-Litterman模型创造性地采用贝叶斯方法将投资者对预期收益的主观看法与资产的市场均衡收益相结合,有效地解决了Markowitz均值-方差模型中投资者难以准确估计各个投资品种预期收益率、以及其权重对预期收…☆142Updated 4 years ago
- ☆57Updated last year
- 量化投资☆213Updated 6 years ago
- Barra CNE6 因子构建☆276Updated 5 years ago
- 沪深300指数纯因子组合构建☆51Updated 5 years ago
- ☆146Updated last year
- Campisi纯债型基金业绩归因模型程序,适用于中国市场,需要有Wind的API接口权限☆40Updated last year
- 升级后的gplearn, 支持包含时序和截面参数的自定义函数,例如均线☆59Updated last year
- 获取经典的量化多因子模型数据☆71Updated 3 years ago
- 金融量化数据库构建☆77Updated last year
- 基于华泰研报对原alpha101代码进行简化和拓展☆43Updated 5 years ago
- 改进gplearn,主要使用在股票公式挖掘☆93Updated 4 years ago
- A risk evaluation program that follows BARRA's CNE6 and USE4 risk model to predict the risk and distribution of factors in a portfolio. C…☆62Updated 4 years ago
- 以wind为数据源的基金单期brinson业绩归因☆79Updated 5 years ago
- 计算波动率的六种方法,计算隐含波动率,凤凰期权的定价,编制基于50ETF期权的VIX指数☆121Updated 4 years ago