jbwhit / jupyter-tips-and-tricks
Using Project Jupyter for data science.
☆259Updated 4 years ago
Alternatives and similar repositories for jupyter-tips-and-tricks:
Users that are interested in jupyter-tips-and-tricks are comparing it to the libraries listed below
- For the pandas tutorial at PyData Seattle: https://www.youtube.com/watch?v=otCriSKVV_8☆116Updated 3 years ago
- ☆318Updated 3 years ago
- Code for a workshop on statistical interference using computational methods in Python.☆224Updated 4 years ago
- Example Python DS project☆71Updated 6 years ago
- Walkthrough exercises from PandasTutorial by Wes McKinney.☆149Updated 4 years ago
- Pandas tutorial for SciPy2015 and SciPy2016 conference☆142Updated 8 years ago
- Introduction to Statistical Modeling with Python (PyCon 2017)☆166Updated 4 years ago
- Code for my OSCON 2015 talk☆83Updated 9 years ago
- 📈 Interactive comparison of Python plotting libraries for exploratory data analysis. Examples of using Pandas plotting, plotnine, Seabor…☆108Updated 4 years ago
- A short tutorial for data scientists on how to write tests for code + data.☆119Updated 4 years ago
- A collection of notebook to learn the Applied Predictive Modeling using Python.☆274Updated 8 years ago
- Building Python Data Applications with Blaze and Bokeh Tutorial, SciPy 2015☆144Updated 9 years ago
- Reproducible Data Analysis Workflow in Jupyter☆118Updated 6 years ago
- PyData, The Complete Works of☆299Updated 8 years ago
- Materials for the "Advanced Scikit-learn" class in the afternoon☆165Updated 6 years ago
- Repository containing files for my PyCon 2014 scikit-learn tutorial.☆59Updated 11 years ago
- Scikit-Learn Tutorial for PyData Seattle 2015☆137Updated 9 years ago
- collection of ipython notebooks for "How to Analyse an Online Experiment in Python" tutorial☆60Updated 3 years ago
- Data Science in 30 Minutes☆84Updated 9 years ago
- The ultimate reference guide to data wrangling with Python and R☆240Updated 3 years ago
- Collection of jupyter notebooks☆154Updated last year
- A centralized repository to report scikit-learn model performance across a variety of parameter settings and data sets.☆212Updated 7 years ago
- Creating interactive visualizations with Python☆256Updated 2 years ago
- Tutorial: Bayesian Statistical Analysis in Python☆318Updated 5 years ago
- General Assembly's Data Science course in Washington, DC☆185Updated 2 years ago
- Website and material for the FIXME course on Practical Machine Learning☆90Updated 7 years ago
- COMS W4995 Applied Machine Learning - Spring 18☆158Updated 5 years ago
- Materials for the pandas tutorial at PyData Chicago 2016☆54Updated 4 years ago
- Tutorials on visualizing data using python packages like bokeh, plotly, seaborn and igraph☆266Updated 4 years ago
- A fork of the cookiecutter-data-science leveraging Docker for local development.☆131Updated 5 years ago