isLinXu / Stanford-CS-CourseLinks
Stanford-CS-Course
☆301Updated last year
Alternatives and similar repositories for Stanford-CS-Course
Users that are interested in Stanford-CS-Course are comparing it to the libraries listed below
Sorting:
- This is the guide for learning applied statistics.☆141Updated last year
- 转码路线图 - 这不是计算机自学指南,这也不是Leetcode刷题指南,这是你的转码指南。用最少的课建立计算机框架、掌握转码面试基本技能。全部跟下来大概需要 200 小时, 即 3 - 4 个月时间。☆172Updated 2 years ago
- 《动手学深度学习》习题解答,在线阅读地址如下:☆482Updated last year
- CS计算机课程自学资源、教程、路线;Front-End前端工程师-全栈工程师课程自学资源、教程、路线;A Computer Science Curriculum;Front-End Curriculum;免费与付费的计算机科学编程类中英文教程资源☆213Updated last year
- https://hds.boyuai.com☆36Updated 10 months ago
- 聪明办法学Python,简明且系统的 Python 入门教程第二版。☆318Updated 6 months ago
- ☆734Updated last year
- CS61A/B/C的学习经验总结☆125Updated 3 years ago
- https://hml.boyuai.com☆476Updated 2 years ago
- The notes and Lab code of public courses I have taken.☆112Updated last year
- 《李宏毅生成式人工智能教程》,PDF下载地址:https://github.com/datawhalechina/leegenai-tutorial/releases☆149Updated 3 weeks ago
- 华章数学丛书高清扫描☆402Updated 2 years ago
- Learning Resources And Links Of Machine Learning(updating)☆215Updated 6 years ago
- ☆103Updated 4 years ago
- 浙江大学系列朋辈辅学「实用技能拾遗」课程资料仓库☆401Updated last year
- 🐳 LeetCode 算法笔记:面试、刷题、学算法。在线阅读地址:https://datawhalechina.github.io/leetcode-notes/☆891Updated last week
- 这是我学习MIT18.06线性代数课所收集的学习材料☆156Updated 5 months ago
- 《计算机系统要素:从零开始构建现代计算机》课程笔记&作业+数电复习☆94Updated 7 months ago
- Kaggle 项目实战(教程) = 文档 + 代码 + 视频☆107Updated 7 years ago
- 《MATHEMATICS FOR MACHINE LEARNING》 一书的部分翻译。☆143Updated 11 months ago
- 全球顶级高校AI课程知识点笔记与速查表☆286Updated 3 years ago
- My solutions to the labs, homework, and projects auditing the CS61a. https://inst.eecs.berkeley.edu/~cs61a/fa20/☆296Updated 3 years ago
- A Chinese Translation of Stanford CS229 notes 斯坦福机器学习CS229课程讲义的中文翻译☆271Updated 3 years ago
- 整理深度学习,机器学习相关的电子书pdf版本☆136Updated last year
- 计算机专业大学四年学习指南☆170Updated 2 years ago
- 《数学建模导论》教程,全网最全数学建模模型与算法教程系列,带你走进数学建模的大门!☆641Updated 11 months ago
- Datawhale开源教程《人工智能的数学基础》☆122Updated this week
- 计算之魂习题探讨☆74Updated 2 years ago
- 概率论与数理统计笔记(《概率论与数理统计》陈希孺院士、《概率论与数理统计教程》茆诗松教授以及相关资料)☆144Updated 3 years ago
- ☆119Updated 3 years ago