giannisnik / somLinks
Pytorch implementation of a Self-Organizing Map
☆88Updated 6 years ago
Alternatives and similar repositories for som
Users that are interested in som are comparing it to the libraries listed below
Sorting:
- A CNN Variational Autoencoder (CNN-VAE) implemented in PyTorch☆300Updated 5 years ago
- Variational auto encoder in pytorch☆57Updated 6 years ago
- Pytorch implementation of Self-Organizing Map(SOM). Use MNIST dataset as a demo.☆44Updated 6 years ago
- PyTorch re-implementation of parts of "Deep Sets" (NIPS 2017)☆72Updated 7 years ago
- Official pytorch implementation of the paper "Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels" (NeurIPS 2020)☆205Updated 3 years ago
- Implementation of a convolutional Variational-Autoencoder model in pytorch.☆74Updated 6 years ago
- This repository tries to provide unsupervised deep learning models with Pytorch☆90Updated 7 years ago
- Ladder Variational Autoencoders (LVAE) in PyTorch☆92Updated 5 years ago
- PyTorch implementation of Wasserstein Auto-Encoders☆295Updated 5 years ago
- Pytorch Adversarial Auto Encoder (AAE)☆87Updated 6 years ago
- Pytorch implementation of Hyperspherical Variational Auto-Encoders☆372Updated 5 years ago
- Pytorch Implementation of variational auto-encoder for MNIST☆62Updated 6 years ago
- Disentanglement library for PyTorch☆281Updated 3 years ago
- ☆68Updated 6 years ago
- This repository contains a pytorch implementation for the paper: Multi-Level Variational Autoencoder (https://arxiv.org/abs/1705.08841), …☆71Updated 3 years ago
- Convolutional variational autoencoder in PyTorch☆46Updated 7 years ago
- Pytorch implementation of Neural Processes for functions and images☆232Updated 3 years ago
- This repository has implementation and tutorial for Deep Belief Network☆101Updated 6 years ago
- Experimenting with different regression losses. Implemented in Pytorch.☆147Updated 6 years ago
- Implementation of autoencoders in PyTorch☆57Updated 7 years ago
- Semi-supervised learning with mnist using variational autoencoders. An unsupervised representation is learned which allows for superior …☆33Updated 7 years ago
- Restricted Boltzmann Machines (RBMs) in PyTorch☆163Updated 7 years ago
- PyTorch Implementations of Dropout Variants☆87Updated 7 years ago
- Pytorch implementations of generative models: VQVAE2, AIR, DRAW, InfoGAN, DCGAN, SSVAE☆92Updated 4 years ago
- ☆52Updated 8 years ago
- ☆91Updated 6 years ago
- An implementation of the Deep Neural Decision Forests in PyTorch☆165Updated 6 years ago
- Implementation of the Sliced Wasserstein Autoencoders☆90Updated 7 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆103Updated 6 years ago
- Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge☆62Updated 2 years ago