drivendata / data-science-is-softwareLinks
☆317Updated 4 years ago
Alternatives and similar repositories for data-science-is-software
Users that are interested in data-science-is-software are comparing it to the libraries listed below
Sorting:
- Observations from Ian on successfully delivering data science products☆543Updated 4 years ago
- A library for defensive data analysis.☆500Updated 5 years ago
- Using Project Jupyter for data science.☆258Updated 4 years ago
- A short tutorial for data scientists on how to write tests for code + data.☆120Updated 4 years ago
- Example Python DS project☆71Updated 6 years ago
- code for my "stupid itertools tricks" talk from pydata seattle 2015☆153Updated 9 years ago
- Introduction to Statistical Modeling with Python (PyCon 2017)☆166Updated 4 years ago
- Reproducible Data Analysis Workflow in Jupyter☆118Updated 6 years ago
- A fork of the cookiecutter-data-science leveraging Docker for local development.☆131Updated 5 years ago
- For the pandas tutorial at PyData Seattle: https://www.youtube.com/watch?v=otCriSKVV_8☆116Updated 3 years ago
- PyData NYC 2015 conference☆94Updated 9 years ago
- Code for a workshop on statistical interference using computational methods in Python.☆225Updated 4 years ago
- PyData Seattle 2015: Python Data Bikeshed☆127Updated 9 years ago
- 📈 Interactive comparison of Python plotting libraries for exploratory data analysis. Examples of using Pandas plotting, plotnine, Seabor…☆108Updated 4 years ago
- The ultimate reference guide to data wrangling with Python and R☆240Updated 3 years ago
- A Pandas Styler class for making beautiful tables☆416Updated 2 years ago
- DePy 2015 Talk☆117Updated 7 years ago
- ☆196Updated 9 years ago
- ☆86Updated 6 years ago
- Parallel computing in Python tutorial materials☆306Updated 5 years ago
- Materials for my pandas tutorial at PyData 2014, NYC☆111Updated 9 years ago
- PyData, The Complete Works of☆299Updated 8 years ago
- Tutorial: Bayesian Statistical Analysis in Python☆319Updated 6 years ago
- Introductory Statistical Inference☆144Updated last year
- Code for my OSCON 2015 talk☆83Updated 9 years ago
- Pandas tutorial for SciPy2015 and SciPy2016 conference☆142Updated 8 years ago
- Tools for exploratory data analysis in Python☆646Updated last year
- Magic functions for using Jupyter Notebook with Apache Spark and a variety of SQL databases.☆171Updated 6 years ago
- Materials for the pandas tutorial at PyData Chicago 2016☆54Updated 4 years ago
- A centralized repository to report scikit-learn model performance across a variety of parameter settings and data sets.☆212Updated 7 years ago