dalab / subsampled_cubic_regularizationLinks
Source code for "Sub-sampled Cubic Regularization for Non-convex Optimization", JM Kohler, A Lucchi, https://arxiv.org/abs/1705.05933
☆15Updated 6 years ago
Alternatives and similar repositories for subsampled_cubic_regularization
Users that are interested in subsampled_cubic_regularization are comparing it to the libraries listed below
Sorting:
- Supporting code for "Parallel Streaming Wasserstein Barycenters"☆10Updated 7 years ago
- A variational inference method with accurate uncertainty estimation. It uses a new semi-implicit variational family built on neural netwo…☆54Updated 9 months ago
- L. Chizat, G. Peyré, B. Schmitzer, F-X. Vialard. Scaling Algorithms for Unbalanced Transport Problems. Preprint Arxiv:1607.05816, 2016.☆42Updated 8 years ago
- ☆15Updated 7 years ago
- Nonlinear SVGD for Learning Diversified Mixture Models☆13Updated 6 years ago
- Code for the paper "Let’s Make Block Coordinate Descent Go Fast"☆48Updated 2 years ago
- Stochastic Optimization for Optimal Transport☆22Updated 8 years ago
- Adaptive gradient descent without descent☆48Updated 3 years ago
- Codes for "Understanding and Accelerating Particle-Based Variational Inference" (ICML-19)☆22Updated 5 years ago
- Stochastic Gradient Langevin Dynamics for Bayesian learning☆33Updated 3 years ago
- Code repo for "Function-Space Distributions over Kernels"☆32Updated 4 years ago
- Riemannian stochastic optimization algorithms: Version 1.0.3☆64Updated 2 years ago
- ☆38Updated 5 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆73Updated 8 years ago
- Max-value Entropy Search for Efficient Bayesian Optimization☆76Updated 3 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆57Updated 6 years ago
- Code for Non-convex Learning via Replica Exchange Stochastic Gradient MCMC, ICML 2020.☆25Updated 4 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆20Updated 5 years ago
- Code for NIPS 2017 spotlight paper: "Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration" by Jason Alt…☆31Updated 7 years ago
- Approximate Inference Turns Deep Networks into Gaussian Processes (dnn2gp)☆48Updated 5 years ago
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆64Updated 2 years ago
- tensorflow implementation of the Wasserstein (aka optimal transport) distance☆72Updated 4 years ago
- ☆40Updated 6 years ago
- Tensorflow implementation of Stein Variational Gradient Descent (SVGD)☆26Updated 7 years ago
- J-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré. Iterative Bregman Projections for Regularized Transportation Problems. SIAM Jour…☆32Updated 8 years ago
- The MATLAB source code☆14Updated 5 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆29Updated 6 years ago
- Tensorflow Implementation of "Large-scale Optimal Transport and Mapping Estimation"(ICLR2018/NIPS 2017 OTML)☆20Updated 6 years ago
- Deep neural network kernel for Gaussian process☆208Updated 4 years ago
- Matlab code implementing Hamiltonian Annealed Importance Sampling for importance weight, partition function, and log likelihood estimatio…☆26Updated 10 years ago