cnstark / gputaskerLinks
An awesome gpu tasks scheduler. 轻量好用的GPU机群任务调度工具。觉得有用可以点个star
☆190Updated 3 years ago
Alternatives and similar repositories for gputasker
Users that are interested in gputasker are comparing it to the libraries listed below
Sorting:
- 📊 A simple command-line utility for querying and monitoring GPU status☆92Updated 2 years ago
- 一款便捷的抢占显卡脚本☆359Updated 8 months ago
- The record of what I‘ve been through.☆101Updated 8 months ago
- Cool Papers - Immersive Paper Discovery☆619Updated 3 weeks ago
- Download papers and supplemental materials from open-access paper website, such as AAAI, AAMAS, AISTATS, COLT, CORL, CVPR, ECCV, ICCV, IC…☆276Updated last month
- A light-weight script for maintaining a LOT of machine learning experiments.☆92Updated 2 years ago
- DeepSpeed教程 & 示例注释 & 学习笔记 (大模型高效训练)☆177Updated 2 years ago
- pytorch单精度、半精度、混合精度、单卡、多卡(DP / DDP)、FSDP、DeepSpeed模型训练代码,并对比不同方法的训练速度以及GPU内存的使用☆120Updated last year
- Yet another PyTorch Trainer and some core components for deep learning.☆223Updated last year
- ☆168Updated this week
- ☆262Updated 6 months ago
- ☆61Updated last week
- DeepSpeed Tutorial☆102Updated last year
- Watch for idle GPUs and run your jobs: launches jobs in tmux, keeps logs/status and sends start/finish emails..☆78Updated this week
- 实验室服务器管理☆29Updated last year
- How to use wandb?☆676Updated 2 years ago
- deep learning template code☆66Updated last year
- Download the source latex code of multiple arXiv paper with one click☆110Updated last year
- Lion and Adam optimization comparison☆64Updated 2 years ago
- 看图学大模型☆318Updated last year
- ZO2 (Zeroth-Order Offloading): Full Parameter Fine-Tuning 175B LLMs with 18GB GPU Memory☆183Updated 2 months ago
- ☆114Updated 10 months ago
- ☆174Updated this week
- ☆53Updated 2 years ago
- 青稞Talk☆146Updated this week
- ☆100Updated 3 years ago
- LiBai(李白): A Toolbox for Large-Scale Distributed Parallel Training☆408Updated last month
- 多模态 MM +Chat 合集☆277Updated last month
- ☆50Updated 10 months ago
- 欢迎来到 "LLM-travel" 仓库!探索大语言模型(LLM)的奥秘 🚀。致力于深入理解、探讨以及实现与大模型相关的各种技术、原理和应用。☆340Updated last year