chst1 / -c-Links
不使用任何框架,纯手写,利用C++实现卷积神经网络,适合初学者理解卷积神经网络的具体实现及原理
☆33Updated 5 years ago
Alternatives and similar repositories for -c-
Users that are interested in -c- are comparing it to the libraries listed below
Sorting:
- C++ inplementation of CNN(Cnnvolutional Neural Network) for image classification☆100Updated 2 years ago
- A simple deep neural network implemented in C++,based with OpenCV Mat matrix class☆314Updated 6 years ago
- B站Efficient-Neural-Network学习分享的配套代码☆300Updated 3 years ago
- 使用Huffman编码对图像进行无损压缩和解压。☆67Updated 7 years ago
- 模型压缩demo(剪枝、量化、知识蒸馏)☆77Updated 5 years ago
- ☆20Updated 5 years ago
- C++从零开始深度学习☆66Updated 5 years ago
- ☆48Updated 7 years ago
- OpenPose uses Pytorch for static quantization, saving, and loading of models☆88Updated 4 years ago
- AlexeyAB-DarkNet源码解析☆354Updated 5 years ago
- C++ 线程库示例及教程☆79Updated 2 years ago
- 🔥 (yolov3 yolov4 yolov5 unet ...)A mini pytorch inference framework which inspired from darknet.☆748Updated 2 years ago
- This project contains some deep learning code☆359Updated this week
- 计算机视觉项目实战☆119Updated 5 years ago
- The resources for my book Mobile Deep Learning In Action☆39Updated last year
- b站上的课程☆75Updated 2 years ago
- 飞翔的荷兰人带你入门目标检测-第一季(Yolo-v1)☆23Updated 2 years ago
- A simple network quantization demo using pytorch from scratch.☆534Updated 2 years ago
- cuda编程学习资料☆37Updated 5 years ago
- www.giantpandacv.com☆152Updated last year
- 基于剪枝的神经网络压缩与加速☆23Updated 6 years ago
- Learning both Weights and Connections for Efficient Neural Networks https://arxiv.org/abs/1506.02626☆18Updated 4 years ago
- c++实现神经网络☆12Updated 6 years ago
- arm-neon☆92Updated last year
- 结构体数据序列化存储为json配置文件或者图像数据序列化为二进制存储Protocol Buffers;Modern CPlusPlus Guide; The Modern C++ to solve real-world problems; CMake构建复杂工程项目、C/C…☆58Updated last week
- CUDA C 编程权威指南代码实现 包含了书上第二章到第八章的大部分代码实现和作者笔记,全由作者本人手动实现,难免有错误的地方,请大家谨慎参考,非常欢迎对错误的指正。 如果有帮助的话请Star一下,对作者帮助很大,谢谢!☆359Updated 2 years ago
- 基于OPenCV实现图像处理各种常用算法☆238Updated 5 years ago
- ☆34Updated 5 years ago
- Model Compression 1. Pruning(BN Pruning) 2. Knowledge Distillation (Hinton) 3. Quantization (MNN) 4. Deployment (MNN)☆79Updated 4 years ago
- 记录 C++ 学习历程,包括相应课件和笔记【侯捷老师课程】☆25Updated 4 years ago