cathy-kim / Pelee-TensorRT
Pelee(NeurIPS'18)-TensorRT Implementation (Caffe Parser)
☆86Updated 5 years ago
Alternatives and similar repositories for Pelee-TensorRT:
Users that are interested in Pelee-TensorRT are comparing it to the libraries listed below
- yolov3☆67Updated 6 years ago
- Caffe Implementation of MobileNets V3☆130Updated 5 years ago
- Gluon-Mobilenet-yolov3☆98Updated 4 years ago
- tensorRT retinaface mobilenet☆42Updated 5 years ago
- A caffe implementation of Mnasnet: MnasNet: Platform-Aware Neural Architecture Search for Mobile.☆52Updated 6 years ago
- mobilenet 与darknet yolo☆95Updated 7 years ago
- A Caffe2 implementation of the YOLO v3 object detection algorithm☆30Updated 6 years ago
- ☆44Updated 6 years ago
- A YOLOv3 model in caffe☆42Updated 6 years ago
- SSD detection network of SqueezeNet, with pretrained weights on VOC0712 and mAP=0.643☆64Updated 7 years ago
- This is caffe implementation of shuffleNet V2☆69Updated 6 years ago
- TensorRT prelu and slice☆39Updated 6 years ago
- ☆138Updated 5 years ago
- Light-Head RCNN and One Novel Object Detector☆113Updated 6 years ago
- TensorRT Net Wrapper☆95Updated 5 years ago
- Object detection model thundernet tensorflow.keras implementation☆83Updated 5 years ago
- A tensorflow implement for PeleeNet:A Real-Time Object Detection System on Mobile Devices☆92Updated 6 years ago
- Object Detection using EfficientNet☆45Updated 5 years ago
- Modified RefineDet☆23Updated 4 years ago
- A C++ API of the LFFD with ncnn☆99Updated 4 years ago
- ☆79Updated 6 years ago
- From pytorch-mobilenetv3 to caffe☆15Updated 5 years ago
- Caffe implementation of Mobilenet-SSD face detector (NCS compatible)☆84Updated 5 years ago
- ☆147Updated 6 years ago
- ☆34Updated 5 years ago
- 对yolo模型进行网络压缩、修剪等实验☆51Updated 7 years ago
- ☆128Updated 6 years ago
- 重新设计的RFBNet300,模型参数量只有0.99MB,AP达到0.78,200FPS☆99Updated 5 years ago
- Lightweight Networks such as MobileNet, ShuffleNet and ThunderNet implemented in Pytorch☆72Updated 4 years ago
- centerNet Caffe inference CPP☆69Updated 5 years ago