arkanivasarkar / EEG-Data-Augmentation-using-Variational-Autoencoder
Improving performance of motor imagery classification using variational-autoencoder and synthetic EEG signals
☆38Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for EEG-Data-Augmentation-using-Variational-Autoencoder
- A research repository of deep learning on electroencephalographic (EEG) for Motor imagery(MI), including eeg data processing(visualizatio…☆57Updated 3 months ago
- EEG Motor Imagery with Deep Learning☆13Updated 2 years ago
- Benchmark of data augmentations for EEG (code from Rommel, Paillard, Moreau and Gramfort, "Data augmentation for learning predictive mode…☆39Updated 2 years ago
- This is the PyTorch implementation of the FBMSNet architecture for EEG-MI classification.☆33Updated last year
- code for LMDA☆64Updated last year
- Code to accompany our International Conference on Pattern Recognition (ICPR) paper entitled - Leveraging Synthetic Subject Invariant EEG …☆40Updated 4 months ago
- EEG motor imagery classification using convolutional neural networks☆35Updated last year
- FBCNet: An Efficient Multi-view Convolutional Neural Network for Brain-Computer Interface☆120Updated 11 months ago
- This is the python implementation of Tensor-CSPNet and Graph-CSPNet.☆59Updated 6 months ago
- Code for the paper "Multi-Task CNN Model for Emotion Recognition from EEG Brain Maps". DEAP dataset. Python/Keras/Tensorflow 2 Impementat…☆49Updated last year
- Official repository of EEG-Inception, a general-purpose and powerful deep convolutional neural network for EEG procesing☆37Updated last year
- Source Code for "Adaptive Transfer Learning with Deep CNN for EEG Motor Imagery Classification".☆84Updated last year
- The codes that I implemented during my B.Sc. project.☆20Updated 2 years ago
- Seeking to recreate the work demonstrated in A Multi-Branch 3D Convolutional Neural Network for EEG-Based Motor Imagery Classification by…☆18Updated 3 years ago
- ☆40Updated 2 years ago
- ECE-GY 9123 Project: GCN-Explain-Net: An Explainable Graph Convolutional Neural Network (GCN) for EEG-based Motor Imagery Classification …☆46Updated 3 years ago
- Scripts to a) download DEAP EEG dataset b) preprocess its EEG signals and c) perform feature extraction☆57Updated 2 years ago
- ☆72Updated 3 years ago
- A list of papers for motor imagery using machine learning/deep learning.☆60Updated 3 years ago
- Implementation of graph convolutional networks based on PyTorch Geometric to classify EEG signals.☆49Updated 3 years ago
- Classification of BCI competition VI dataset 2a using ANN by applying WPD and CSP for feature extraction☆81Updated 2 years ago
- Deep Learning pipeline for motor-imagery classification.☆56Updated 2 years ago
- Rethinking CNN Architecture for Enhancing Decoding Performance of Motor Imagery-based EEG Signals☆31Updated 2 years ago
- EEG based emotion recognition using Transfer Learning and CNN model on SEED, SEED-IV and SEED-V☆25Updated last year
- ☆14Updated last year
- Clasificacion de imagenes motoras en señales EEG con CNN, LSTM y otros clasificadores☆50Updated 3 years ago
- Preprocesamiento de BCI Competition IV data set 2a☆11Updated 4 years ago
- GGN model for seizure classification (datasets: TUH EEG seizure TUSZ 1.5.2)☆41Updated last year
- In AugmentBrain we investigate the performance of different data augmentation methods for the classification of Motor Imagery (MI) data u…☆22Updated 3 years ago
- ☆27Updated 3 months ago