aktersnurra / information-maximizing-variational-autoencodersLinks
A PyTorch implementation of InfoVAE: Balancing Learning and Inference in Variational Autoencoders by Zhao et al.
☆10Updated 5 years ago
Alternatives and similar repositories for information-maximizing-variational-autoencoders
Users that are interested in information-maximizing-variational-autoencoders are comparing it to the libraries listed below
Sorting:
- Implementation of a model to make VAE and GMM train from each other☆26Updated 3 years ago
- Implementation of the MMD VAE paper (InfoVAE: Information Maximizing Variational Autoencoders) in pytorch☆42Updated 4 years ago
- ☆32Updated 2 years ago
- PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"☆73Updated 5 years ago
- A PyTorch Implementation of VaDE(https://arxiv.org/pdf/1611.05148.pdf)☆39Updated 4 years ago
- Code for ICE-BeeM paper - NeurIPS 2020☆87Updated 3 years ago
- Code repository of the paper "BooVAE: Boosting Approach for Continual Learning of VAE" published at NeurIPS 2021. https://arxiv.org/abs/1…☆14Updated 3 years ago
- Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence☆19Updated 2 years ago
- VAEs and nonlinear ICA: a unifying framework☆47Updated 5 years ago
- Code release for Representation Subspace Distance for Domain Adaptation Regression (ICML 2021)☆82Updated 3 years ago
- Ladder Variational Autoencoders (LVAE) in PyTorch☆91Updated 4 years ago
- Implementation of [Progressive Neural Networks](https://arxiv.org/abs/1606.04671) using Pytorch Framework☆52Updated 5 years ago
- ☆21Updated 4 years ago
- ☆68Updated 6 years ago
- pytorch implementation of https://arxiv.org/abs/1705.09847☆14Updated 5 years ago
- ☆78Updated 4 years ago
- ☆22Updated 5 years ago
- Implementation of 'DIVA: Domain Invariant Variational Autoencoders'☆102Updated 5 years ago
- Original implementation of Separated Paths for Local and Global Information framework (SPLIT) in TensorFlow 2.☆19Updated 2 years ago
- This repository contains implementations of the paper, Bayesian Model-Agnostic Meta-Learning.☆60Updated 5 years ago
- the reproduce of Variational Deep Embedding : A Generative Approach to Clustering Requirements by pytorch☆136Updated 2 years ago
- Disentangled gEnerative cAusal Representation (DEAR)☆60Updated 2 years ago
- Pytorch implementation of Deep Variational Information Bottleneck☆195Updated 7 years ago
- A PyTorch implementation of "Multimodal Generative Models for Scalable Weakly-Supervised Learning" (https://arxiv.org/abs/1802.05335)☆159Updated 6 years ago
- ☆16Updated 3 years ago
- Gaussian Process Prior Variational Autoencoder☆84Updated 6 years ago
- Variational Dirichlet Process Gaussian Mixture Models☆29Updated 10 years ago
- Learning Autoencoders with Relational Regularization☆46Updated 4 years ago
- Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts (Neurips 2020)☆77Updated 3 years ago
- Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution …☆74Updated 3 years ago