ajbc / lda-sviLinks
an implementation of latent Dirichlet allocation (LDA) with stochastic variational inference
☆20Updated 8 years ago
Alternatives and similar repositories for lda-svi
Users that are interested in lda-svi are comparing it to the libraries listed below
Sorting:
- Dependent multinomials made easy: stick-breaking with the Pólya-gamma augmentation☆61Updated 5 years ago
- Structure learning for sparse graphs with latent variables☆45Updated 9 years ago
- Python implementation of Markov Jump Hamiltonian Monte Carlo☆24Updated 8 years ago
- Variational Fourier Features☆87Updated 4 years ago
- Code for the icml paper "zero inflated exponential family embedding"☆29Updated 8 years ago
- Bernoulli Embeddings for Text☆84Updated 8 years ago
- Python code for implementing embeddings in the Wasserstein space of elliptical distributions☆11Updated 5 years ago
- ☆20Updated 8 years ago
- ☆53Updated 7 years ago
- Vector-Space Markov Random Fields☆21Updated 10 years ago
- ☆30Updated 8 years ago
- Reducing Reparameterization Gradient Variance code.☆33Updated 8 years ago
- Generalized Dynamic Topic Models using Gaussian Processes☆20Updated 7 years ago
- The information sieve for discrete variables.☆36Updated 9 years ago
- Bayesian multi-tensor factorization methods, with side information☆29Updated 5 years ago
- Sparse Beta-Divergence Tensor Factorization Library☆48Updated 7 months ago
- Pitman-Yor processes in python☆26Updated 11 years ago
- ☆12Updated 2 years ago
- Dirichlet Process Mixture using PVI, SMC, Variational☆15Updated 11 years ago
- This implements variational inference for the correlated topic model.☆21Updated 11 years ago
- ☆11Updated 9 years ago
- Exponential family embeddings (Poisson or Bernoulli) for discrete data☆32Updated 6 years ago
- Movies Recommendation with Hierarchical Poisson Factorization in Edward☆18Updated 8 years ago
- Implementation of stochastic variational inference for Bayesian hidden Markov models.☆67Updated 8 years ago
- Non-stationary Off-policy Evaluation☆13Updated 7 years ago
- Bayesian Poisson Tucker decomposition☆17Updated 8 years ago
- ☆41Updated 9 years ago
- Hierarchical Dirichlet processes. Topic models where the data determine the number of topics. This implements Gibbs sampling.☆149Updated 8 years ago
- Mallet-compatible anchor-based topic model☆38Updated 12 years ago
- Tensor Factorization via Matrix Factorization☆34Updated 10 years ago