agave233 / 2020-CCF-Crowd-Flow-PredictionLinks
科技战疫-大数据公益挑战赛-DataFountain重点区域人群密度预测 第1名方案
☆38Updated 3 years ago
Alternatives and similar repositories for 2020-CCF-Crowd-Flow-Prediction
Users that are interested in 2020-CCF-Crowd-Flow-Prediction are comparing it to the libraries listed below
Sorting:
- 2020 CCF BDCI 线上第一 解决方案代码☆43Updated 4 years ago
- 12th Solution: Matrix Factorization for High-Dimensional and Sparse Time Series Prediction☆30Updated 4 years ago
- Machine learning competition solutions and tricks | 算法竞赛方案☆57Updated last month
- 【天池】2020数字中国创新大赛数字政府赛道智慧海洋建设——复赛0.904融合模型☆41Updated last year
- 2020数字中国创新大赛—算法赛:智慧海洋建设☆94Updated last year
- KDD CUP 2021 Multi-dataset Time Series Anomaly Detection☆29Updated 4 years ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆51Updated 5 years ago
- My Data Competition Solutions☆101Updated last year
- a easy pytorch implement of GeoMAN☆70Updated 2 years ago
- “2020创青春·交子杯” 挑战赛 AI算法赛道 TOP1方案☆48Updated 4 years ago
- 2020数字中国创新大赛-数字政府赛道-智能算法赛:智慧海洋建设算法赛道代码☆39Updated 5 years ago
- 天池全球城市计算AI挑战赛-地铁人流量预测 A榜22/2319☆134Updated 6 years ago
- 天池DCIC2020船只轨迹数据挖掘比赛算法阶段Rank 3解决方案:☆110Updated 3 years ago
- ChallengeHub开源的各大比赛baseline集合☆81Updated 3 years ago
- 2019天池 全球城市计算AI挑战赛 (地铁流量预测)Top30☆11Updated 6 years ago
- 第三届 Apache Flink 极客挑战赛暨AAIG CUP——电商推荐“抱大腿”攻击识别亚军代码方案☆29Updated 3 years ago
- A Decomposition Approach for Urban Anomaly Detection Across Spatiotemporal Data☆16Updated 3 years ago
- 2020 第四届工业大数据创新竞赛-水电站入库流量预测-top1代码☆32Updated 4 years ago
- 2019天池大数据竞赛杭州市地铁流量流入流出预测 成绩27/2319 比赛地址https://tianchi.aliyun.com/competition/entrance/231708/introduction?spm=5176.12281957.1004.6.38b0…☆45Updated 6 years ago
- ☆14Updated 4 years ago
- 天池全球城市计算AI挑战赛:A榜单模型12.28, B榜单模型12.53,多模型融合11.74(Top 3), C榜官方结果17.08(新人赛验证C榜可通过乘个衰减提升很多到12.00,A榜也有效果到11.88)☆40Updated 6 years ago
- 数据竞赛笔记fork☆72Updated 2 years ago
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆83Updated 4 years ago
- 2018年甜橙金融杯大数据建模大赛-初赛第四-复赛线上11-决赛9-复现top1解决方案-【二分类,风控】☆76Updated 4 years ago
- 机器学习竞赛信息聚合(Machine learning competition information aggregation)☆131Updated last year
- 物联感知时空序列数据分析;SpatiotemporalSequence;☆26Updated 5 years ago
- ☆62Updated 3 years ago
- ☆45Updated 5 years ago
- 2019ccf乘用车销量预测Top1%代码☆13Updated 5 years ago
- 本赛题要求选手基于历史光伏发电数据、天气数据、光伏设备空间相对位置等信息,通过建立适当的模型,对未来一段时间内的光伏发电出力进行预测。A榜使用外部数据得分0.88501103804 排名32,未使用外部数据得分0.88042407737 ;B榜得分0.90467829011…☆31Updated last year