ZongXR / DCIC2024-PhotoVoltaic
本赛题要求选手基于历史光伏发电数据、天气数据、光伏设备空间相对位置等信息,通过建立适当的模型,对未来一段时间内的光伏发电出力进行预测。A榜使用外部数据得分0.88501103804 排名32,未使用外部数据得分0.88042407737 ;B榜得分0.90467829011排名21.
☆28Updated 9 months ago
Alternatives and similar repositories for DCIC2024-PhotoVoltaic:
Users that are interested in DCIC2024-PhotoVoltaic are comparing it to the libraries listed below
- wind_power_forecast☆31Updated 2 years ago
- 本赛题要求选手基于风力海况气象数据、风机性能数据等,针对复杂多变气象和海况条件的深度耦合影响,提出海上风电出力预测模型,提升模型精度以及在工程应用中的可信度,为大规模风电接入下的能源安全可靠运行提供保障。A榜得分0.06490342,排名83;B榜得分0.06745705,…☆16Updated 10 months ago
- ☆20Updated 2 years ago
- 3rd Place Solution of KDD Cup 2022-Spatial Dynamic Wind Power Forecasting☆113Updated last year
- KDD Cup 2022 spatial dynamic wind power forecast challenge solution.☆81Updated 2 years ago
- [KDD CUP 2022] 11th place solution of Spatial-Temporal Graph Neural Network for Wind Power Forecasting in Baidu KDD CUP 2022☆54Updated last year
- My Data Competition Solutions☆101Updated last year
- A collection of data competition solutions | 数据竞赛方案合集☆49Updated last month
- 2020 第四届工业大数据创新竞赛-水电站入库流量预测-top1代码☆29Updated 4 years ago
- ☆19Updated last year
- Official implementation of "A Transformer approach for Electricity Price Forecasting"☆38Updated 5 months ago
- 光伏发电功率预测☆71Updated 4 years ago
- 多变量时序预测transformer☆12Updated 2 years ago
- Codes for kddcup2022☆16Updated 2 years ago
- ☆17Updated 2 years ago
- This is the PyTorch implementation of TPA-LSTM☆58Updated 5 years ago
- KDDCUP2022 Spatial Dynamic Wind Power Forecasting Paddle Track Sixth Place Solution☆22Updated 2 years ago
- 双塔模型,打比赛用。解决多维时间序列的分类预测任务☆32Updated 2 years ago
- Solution in KDD Cup2021 Multi-dataset Time Series Anomaly Detection Competition☆10Updated 3 years ago
- 科技战疫-大数据公益挑战赛-DataFountain重点区域人群密度预测 第1名方案☆37Updated 3 years ago
- Official Code for "How Much Can Time-related Features Enhance Time Series Forecasting?"☆27Updated 2 weeks ago
- ☆11Updated 2 years ago
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆22Updated 5 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆43Updated 4 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆66Updated 6 years ago
- TensorFlow Probability;Time series model☆125Updated 2 years ago
- 基于seq2seq模型的风功率预测☆28Updated 5 years ago
- Code for IoTJ 2024 paper "SageFormer: Series-Aware Framework for Long-Term Multivariate Time-Series Forecasting".☆55Updated 10 months ago
- use deepar to predict water supply network pressure☆21Updated 3 years ago
- ☆49Updated 2 years ago