ZongXR / DCIC2024-PhotoVoltaicLinks
本赛题要求选手基于历史光伏发电数据、天气数据、光伏设备空间相对位置等信息,通过建立适当的模型,对未来一段时间内的光伏发电出力进行预测。A榜使用外部数据得分0.88501103804 排名32,未使用外部数据得分0.88042407737 ;B榜得分0.90467829011排名21.
☆31Updated last year
Alternatives and similar repositories for DCIC2024-PhotoVoltaic
Users that are interested in DCIC2024-PhotoVoltaic are comparing it to the libraries listed below
Sorting:
- Official implementation of "A Transformer approach for Electricity Price Forecasting"☆42Updated 10 months ago
- 3rd Place Solution of KDD Cup 2022-Spatial Dynamic Wind Power Forecasting☆125Updated last year
- wind_power_forecast☆36Updated 2 years ago
- [KDD CUP 2022] 11th place solution of Spatial-Temporal Graph Neural Network for Wind Power Forecasting in Baidu KDD CUP 2022☆57Updated 2 years ago
- 多变量时序预测transformer☆16Updated 2 years ago
- ☆20Updated 2 years ago
- 光伏发电功率预测☆80Updated 5 years ago
- KDD Cup 2022 spatial dynamic wind power forecast challenge solution.☆90Updated 2 years ago
- ☆23Updated 2 years ago
- 本赛题要求选手基于风力海况气象数据、风机性能数据等,针对复杂多变气象和海况条件的深度耦合影响,提出海上风电出力预测模型,提升模型精度以及在工程应用中的可信度,为大规模风电接入下的能源安全可靠运行提供保障。A榜得分0.06490342,排名83;B榜得分0.06745705,…☆21Updated last year
- Code for Deep Spatio Temporal Wind Power Forecasting☆46Updated 3 years ago
- Official Code for "How Much Can Time-related Features Enhance Time Series Forecasting?"☆39Updated 6 months ago
- 2024DCIC光伏发电出力预测☆13Updated last year
- Addressing prediction delays in time series forecasting: A continuous GRU Approach with derivative regularization☆29Updated 10 months ago
- for the realization of TDformer in the paper "First De-Trend then Attend: Rethinking Attention for Time-Series Forecasting", thank you ve…☆39Updated 2 years ago
- 多元多步时间序列的LSTM模型预测——基于Keras☆80Updated 3 years ago
- This is the PyTorch implementation of TPA-LSTM☆60Updated 5 years ago
- Spatiotemporal Attention Networks for Wind Power Forecasting☆75Updated 5 years ago
- 电力负荷的时间序列未来预测☆23Updated 2 years ago
- KDDCUP2022 Spatial Dynamic Wind Power Forecasting Paddle Track Sixth Place Solution☆24Updated 2 years ago
- Time-R1 is a two-stage reinforcement fine-tuning framework that trains large language models to perform slow-thinking, step-by-step reaso…☆37Updated last week
- TensorFlow Probability;Time series model☆127Updated 3 years ago
- ☆32Updated 6 years ago
- Solution in KDD Cup2021 Multi-dataset Time Series Anomaly Detection Competition☆10Updated 4 years ago
- ☆11Updated 2 years ago
- ☆96Updated 7 months ago
- Code for IoTJ 2024 paper "SageFormer: Series-Aware Framework for Long-Term Multivariate Time-Series Forecasting".☆71Updated last year
- 2020 第四届工业大数据创新竞赛-水电站入库流量预测-top1代码☆32Updated 4 years ago
- use deepar to predict water supply network pressure☆21Updated 4 years ago
- ☆18Updated 2 years ago