Y1ran / GAN-Network-Library-TensorflowLinks
八种最常用的GAN生成式对抗网络代码框架
☆74Updated 6 years ago
Alternatives and similar repositories for GAN-Network-Library-Tensorflow
Users that are interested in GAN-Network-Library-Tensorflow are comparing it to the libraries listed below
Sorting:
- 用GAN生成一维数据☆124Updated 5 years ago
- Implementation of the stacked denoising autoencoder in Tensorflow☆206Updated 7 years ago
- 个人练习,自编码器及其变形(理论+实践)☆344Updated 6 years ago
- 深度学习代码☆132Updated 6 years ago
- BLS Code☆135Updated 7 years ago
- 高斯混合模型(GMM 聚类)的 EM 算法实现。☆204Updated 7 years ago
- Pytorch、Scikit-learn实现多种分类方法,包括逻辑回归(Logistic Regression)、多层感知机(MLP)、支持向量机(SVM)、K近邻(KNN)、CNN、RNN,极简代码适合新手小白入门,附英文实验报告(ACM模板)☆443Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- Python code of RBF neural network classification model☆48Updated 7 years ago
- 利用Python实现三层BP神经网络☆84Updated 7 years ago
- 基于PyTorch使用迁移学习完成项目☆61Updated 7 years ago
- RNN示例集合☆42Updated 6 years ago
- A small project abot GA and ANN,基于TensorFlow实现基于遗传算法的神经网络结构搜索技术,在威斯康星乳腺癌细胞分类的数据集上面进行实验,并与传统的机器学习的分类算法进行对比,验证该算法的结果的优劣性。☆38Updated 5 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆57Updated 7 years ago
- ☆140Updated 8 years ago
- pytorch >>> 快速搭建自己的模型!☆126Updated 3 years ago
- using WGAN to generate fault bearing vibration signals☆52Updated 7 years ago
- ☆16Updated 7 years ago
- 集成学习Stacking方法详解☆81Updated 6 years ago
- a back propagation neural network with genetic algorithm☆83Updated 8 years ago
- 用Python实现SVM多分类器☆437Updated last year
- bp 神经网络算法☆128Updated 2 years ago
- 用Tensorflow实现的深度神经网络。☆143Updated 3 years ago
- QPSO algorithm for multi-parameters optimization☆31Updated 7 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- LSTM + Wavelet(长短期记忆神经网络+小波分析):深度学习与数字信号处理的结合☆187Updated 6 years ago
- ML Records in 1110 Lab of BUPT. Some detailed information can be referenced on: https://mathpretty.com/10388.html☆237Updated 2 years ago
- start tests☆23Updated 7 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等☆159Updated 9 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆206Updated 6 years ago