X-21 / Coursera-Machine-Learning-Python-Code
吴恩达《机器学习》课后习题 Python 版 These are Exercises for Coursera's MachineLearning (by Andrew Ng) by Python.
☆11Updated 6 years ago
Alternatives and similar repositories for Coursera-Machine-Learning-Python-Code:
Users that are interested in Coursera-Machine-Learning-Python-Code are comparing it to the libraries listed below
- 疫情期间网民情绪识别代码,包含lstm,bert,xlnet,robert,最高f1为0.725 部署在Google colab☆43Updated 4 years ago
- 基于python的新冠肺炎疫情数据可视化及建模预测☆13Updated 4 years ago
- 改进的k-prototypes聚类算法☆18Updated 4 years ago
- 2021年研究生数学建模竞赛B题,全国二等奖,空气质量预报二次建模,时间序列数据分析与回归预测。Time Series Prediction&Air Quality Prediction.☆36Updated 3 years ago
- 吴恩达老师的机器学习课后习题☆14Updated 6 years ago
- 2021 QQ浏览器ai算法大赛 赛道一 决赛第17名☆16Updated 2 years ago
- 图神经网络、图卷积网络、图注意力网络、图自编码网络、时空图神经网络等论文合集。☆94Updated last year
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆41Updated 5 years ago
- 2020 CCF BDCI 线上第一 解决方案代码☆42Updated 4 years ago
- ☆35Updated 2 years ago
- 零基础入门金融风控-贷款违约预测 TOP11☆36Updated 4 years ago
- 客流预测、Resnet☆15Updated 5 years ago
- 天池DCIC2020船只轨迹数据挖掘比赛算法阶段Rank 3解决方案:☆109Updated 2 years ago
- 60分钟闪击速成PyTorch(Deep Learning with PyTorch: A 60 Minute Blitz)相关文件☆25Updated 3 years ago
- 科技战疫-大数据公益挑战赛-DataFountain重点区域人群密度预测 第1名方案☆38Updated 3 years ago
- 基于深度学习的文本分类,实现基于CNN和RNN的文本分类☆11Updated 3 years ago
- 吴恩达机器学习算法Python实现,附详细的代码注释。☆82Updated 4 years ago
- 疫情期间网民情绪识别比 赛分享+top1~3解决方案☆50Updated 4 years ago
- 一个基于朴素贝叶斯算法的新闻文本分类器☆13Updated 7 years ago
- 朴素贝叶斯算法实战☆1Updated 6 years ago
- Coursera Machine Learning (Andrew Ng) --- python code☆128Updated 8 years ago
- ☆40Updated 2 years ago
- Tutorial about Graph Convolutional Network(GCN)☆98Updated 4 years ago
- 大家好,我是coggle开源小组成员 庐州小火锅,这篇文章将会介绍天池学习赛贷款违约预测的TOP6单模方案(具体介绍见我的csdn:),现附上比赛链接天池学习赛贷款违约预测.https://tianchi.aliyun.com/competition/entrance/53…☆49Updated 4 years ago
- PCA和LDA进行数据降维☆38Updated 4 years ago
- ☆30Updated 4 years ago
- 虚假新闻检测多模态识别第一名解决方案☆38Updated 5 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆36Updated 5 years ago
- 智源研究院&中科院计算所-互联网虚假新闻检测挑战赛☆69Updated 5 years ago
- 电商评论情感分类☆15Updated 4 years ago