Tramac / paper-reading-note
和李沐一起读论文
☆145Updated last week
Alternatives and similar repositories for paper-reading-note:
Users that are interested in paper-reading-note are comparing it to the libraries listed below
- pytorch单精度、半精度、混合精度、单卡、多卡(DP / DDP)、FSDP、DeepSpeed模型训练代码,并对比不同方法的训练速度以及GPU内存的使用☆87Updated 10 months ago
- Materials for the Hugging Face Diffusion Models Course☆205Updated last year
- Cool Papers - Immersive Paper Discovery☆447Updated last month
- Pytorch Lightning入门中文教程,转载请注明来源。(当初是写着玩的,建议看完MNIST这个例子再上手)☆199Updated 4 years ago
- 蜻蜓点论文 Think不Clear, 论文解读视频上传B站, youtube, 西瓜视频(同步到抖音)☆242Updated last year
- 主要记录大语言大模型(LLMs) 算法(应用)工程师多模态相关知识☆113Updated 8 months ago
- [MIR-2023-Survey] A continuously updated paper list for multi-modal pre-trained big models☆284Updated this week
- How to use wandb?☆604Updated last year
- ☆256Updated 9 months ago
- Reading notes about Multimodal Large Language Models, Large Language Models, and Diffusion Models☆235Updated last week
- 多模态 MM +Chat 合集☆238Updated last week
- finetune stable diffusion with Dreambooth、LoRA、ControlNet☆54Updated last year
- WWW2025 Multimodal Intent Recognition for Dialogue Systems Challenge☆114Updated 2 months ago
- 算法岗笔试面试大全,励志做算法届的《五年高考,三年模拟》!☆277Updated last month
- Hugging StableDiffusion, Hugging Future.☆119Updated this week
- DeepSpeed教程 & 示例注释 & 学习笔记 (大模型高效训练)☆146Updated last year
- DeepSpeed Tutorial☆92Updated 5 months ago
- ☆102Updated 9 months ago
- 看图学大模型☆239Updated 5 months ago
- pytorch distribute tutorials☆97Updated 3 months ago
- LLMs interview notes and answers:该仓库主要记录大模型(LLMs)算法工程师相关的面试题和参考答案☆415Updated last year
- a chinese tutorial of git☆148Updated 9 months ago
- a super easy clip model with mnist dataset for study☆88Updated 10 months ago
- 关于Transformer模型的最简洁pytorch实现,包含详细注释☆171Updated last year
- ☆139Updated last year
- 《多模态大模型:新一代人工智能技术范式》作者:刘阳,林倞☆162Updated last month
- 一份pytorch模型训练框架,方便快速设计和开始训练一个模型☆65Updated 2 years ago
- To be the world's best PyTorch project template.☆483Updated last year
- 帮助新手快速入门、快速使用、习惯 OpenMMLab 开源库官方文档且能够自主上手实验,自由选择阅读更深层的知识。☆57Updated last year
- ☆60Updated 2 years ago