Tang-JingWei / watchload-for-rk3588Links
watch the npu & cpu load of rk3588 chip.观察瑞芯微 RK3588 芯片的 NPU 和 CPU 负载。
☆34Updated 7 months ago
Alternatives and similar repositories for watchload-for-rk3588
Users that are interested in watchload-for-rk3588 are comparing it to the libraries listed below
Sorting:
- The project is a multi-threaded inference demo of Yolo running on the RK3588 platform, which has been adapted for reading video files and…☆381Updated 2 months ago
- A simple demo of yolov5s running on rk3588/3588s using Python (about 72 frames). / 一个使用Python在rk3588/3588s上运行的yolov5s简单demo(大约72帧/s)。☆330Updated 2 years ago
- YoloV5 NPU for the RK3566/68/88☆112Updated last year
- A simple demo of yolov5s running on rk3588/3588s using c++ (about 142 frames). / 一个使用c++在rk3588/3588s上运行的yolov5s简单demo(142帧/s)。☆649Updated last year
- Track vehicles and persons on rk3588 / rk3399pro.☆432Updated 2 years ago
- ☆132Updated 8 months ago
- Useful resources for developing with the RK3588.☆365Updated 4 months ago
- yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测)☆58Updated 2 years ago
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆43Updated 10 months ago
- yoloface-50k的可部署模型☆132Updated 3 years ago
- RK3588 AI本地部署☆48Updated 5 months ago
- YOLOv5 for RK3588☆86Updated last year
- ☆47Updated 2 years ago
- 将LLM 模型部署到 Rockchip Rk3588芯片中,在开发板上使用NPU进行推理☆59Updated last year
- YoloV8 NPU for the RK3566/68/88☆76Updated last year
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆253Updated last month
- ☆766Updated last year
- 在rockchip3588上实现用ffmpeg进行推拉流,其中推拉流使用硬件加速编解码☆73Updated last year
- ☆421Updated last week
- ☆261Updated 2 years ago
- Run your yolov7 object detection with Rockchip NPU platforms (RK3566, RK3568, RK3588, RK3588S, RV1103, RV1106, RK3562).☆58Updated last year
- This project implements YOLOv11 inference on the RK3588 platform using the RKNN framework. With deep optimization of the official code an…☆55Updated 9 months ago
- ☆448Updated 5 months ago
- simple yolov5 rtspserver for rk3588☆57Updated 4 months ago
- ☆82Updated 2 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆121Updated 3 years ago
- 边缘设备端算法部署模板框架(包括海思SS928、Hi3519 DV500;瑞芯微rv1126、rk588、比特大陆BM1684X),部署项目包括yolov5、picodet、MNIST,包括优化加速教程☆54Updated 3 months ago
- 将mobliebetv3转换成RKNN部署到泰山派 上☆32Updated last year
- NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite☆253Updated last year
- Modify Code From rknn-toolkit2☆54Updated last year