Sharpiless / Yolov3-plate-detectionLinks
Chinese plate detection(基于YOLOv3的中文车牌检测)
☆11Updated 4 years ago
Alternatives and similar repositories for Yolov3-plate-detection
Users that are interested in Yolov3-plate-detection are comparing it to the libraries listed below
Sorting:
- This is a PyQt5 GUI program, which is based on YoloV5 and DeepSort to track person, and give a warning when someone comes to the "dangero…☆38Updated 4 years ago
- Traffic sign detection 交通标志、信号灯检测,请加Q群交流:904484709☆52Updated 5 years ago
- 计数行人+划出轨迹+变成鸟瞰图☆19Updated 4 years ago
- 使用yolov5与deepsort实现车辆目标跟踪与应用☆23Updated 2 years ago
- 本项目针对传统车道线检测鲁棒性较差的现象,通过运用YOLOV7与DeepLabv3+的图像深度学习算法对特定数据集进行模型训练,开发了一款能调用车载摄像头来识别道路环境,并用语音告知驾驶员偏离车道,前方车距等驾驶信息偏离预警系统,辅助驾驶员更加安全高效的行驶。☆60Updated 2 years ago
- 手把手教你用PaddleX训练手势识别模型,并将该模型用于吃豆豆游戏☆16Updated 4 years ago
- CEAM-YOLOv7: Improved YOLOv7 Based on Channel Expansion and Attention Mechanism for Driver Distraction Behavior Detection☆55Updated last year
- “领航”辅助自动驾驶系统☆13Updated 5 years ago
- ☆51Updated 3 years ago
- YOLOv5实现安全帽检测☆26Updated last year
- yolov5+LPRNet 车牌定位识别☆67Updated 3 years ago
- yolov5 - deepsort 行人 车辆 跟踪 检测 计数☆43Updated 4 years ago
- 可以训练yolov5(v6.0)、yolox、小型网络,添加注意力机制☆66Updated 3 years ago
- A multi-task(detection, tracking, dense estimation, object counting) frame-work based on yolov5+deepsort☆37Updated 4 years ago
- The improved model for multi-object detection and lane line segmentation based on the YoloP model.☆14Updated 2 years ago
- 使用yolov5训练自己数据集(详细过程)并通过flask部署☆38Updated 3 years ago
- 使用Pyqt5搭建YOLO系列多线程目标检测系统☆63Updated 2 years ago
- Car tracking and car counter implemented with YOLOX, ByteTrack and Pytorch.☆44Updated 2 years ago
- 基于FaceNet的人脸检测+识别的课堂学生签到系统☆52Updated 4 years ago
- 多类别多目标跟踪YoloV5+sort/deepsort/bytetrack/BotSort/motdt☆70Updated 2 years ago
- 基于RepVGG中的结构重参数化思想,对YOLOX模型进行了一些变形☆13Updated 3 years ago
- 基于Yolov5的Vue前端目标检测和训练可视化系统☆76Updated 3 years ago
- PYQT5 Yolov5 python GUI☆30Updated 3 years ago
- ☆14Updated 2 years ago
- Detecting people using yolov5 model and the people were classified as High, Moderate and Normal based on their distance from one another.☆19Updated 4 years ago
- 💟《CDNet:一个基于YOLOv5的在Jetson Nano上实时、鲁棒的斑马线检测网络》论文的原生(ultralytics)yolov5训练、推理baseline仓库☆13Updated 3 years ago
- 基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline