SHENZHENYI / Classify-Leaves-Kaggle-MuLi-d2l-course
one competition held by d2l course
☆21Updated 3 years ago
Alternatives and similar repositories for Classify-Leaves-Kaggle-MuLi-d2l-course
Users that are interested in Classify-Leaves-Kaggle-MuLi-d2l-course are comparing it to the libraries listed below
Sorting:
- ☆93Updated 2 years ago
- Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common…☆1,119Updated 3 years ago
- 计算机视觉相关综述。包括目标检测、跟踪........☆2,056Updated this week
- Quickly bring up your PyTorch project(a skeleton)☆734Updated 2 years ago
- resources for CV☆251Updated 4 years ago
- 2020-cs231n个人代码☆286Updated 3 years ago
- 巨硬的NumPy☆415Updated last year
- 浙江大学胡浩基《机器学习》代码☆204Updated 2 years ago
- 主要存储Datawhale组队学习中“计算机视觉”方向的资料。☆360Updated 9 months ago
- 动手学CV-Pytorch版☆913Updated last year
- 冈萨雷斯的《数字图像处理第三版》的读书笔记☆140Updated 4 years ago
- 冈萨雷斯《数字图像处理》Python实现(第三版)☆349Updated 3 years ago
- using SAGAN to generate anime girls pic.☆16Updated 3 years ago
- CS231n作业代码实现☆140Updated last year
- Integrate deep learning models for image classification | Backbone learning/comparison/magic modification project☆1,758Updated 4 months ago
- 吴恩达深度学习2021年空白作业☆113Updated 3 years ago
- Ali-loner的个人主页☆98Updated 3 years ago
- 同济子豪兄的公开课☆1,638Updated last month
- 《机器学习》(西瓜书)代码实战☆807Updated last week
- Pytorch实现:使用ResNet18网络训练Cifar10数据集,测试集准确率达到95.46%(从0开始,不使用预训练模型)☆246Updated 2 weeks ago
- 冈萨雷斯《数字图像处理》第三版-课后习题答案;《数字图像处理(matlab版)》-源代码及图片 DIP☆241Updated 6 months ago
- 深度学习 李宏毅 2021 学习笔记☆1,576Updated 2 years ago
- 博客论文列表:分系列整理☆387Updated last year
- 用于pytorch的图像分类,包含多种模型方法,比如AlexNet,VGG,GoogleNet,ResNet,DenseNet等等,包含可完整运行的代码。除此之外,也有colab的在线运行代码,可以直接在colab在线运行查看结果。也可以迁移到自己的数据集进行迁移学习。☆228Updated last year
- 中文版 v2 课程☆675Updated 3 years ago
- PyTorch深度学习快速入门教程(绝对通俗易懂!)☆3,310Updated 3 months ago
- 利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码☆1,424Updated 2 years ago
- Talk is cheap,show me the code ! Deep Learning,Leaning deep,Have fun!☆150Updated 2 years ago
- 《动手学深度学习》习题解答,在线阅读地址如下:☆452Updated 10 months ago
- Andrew Ng machine learning homework(吴恩达机器学习作业代码)☆25Updated 4 years ago