ResDream / MindTinyRAGLinks
基于MindSpore的TinyRAG实现
☆19Updated last year
Alternatives and similar repositories for MindTinyRAG
Users that are interested in MindTinyRAG are comparing it to the libraries listed below
Sorting:
- 《动手学深度学习》的MindSpore实现。供MindSpore学习者配合李沐老师课程使用。☆125Updated 2 years ago
- MindSpore online courses: Step into LLM☆483Updated last month
- MindSpore + 🤗Huggingface: Run any Transformers/Diffusers model on MindSpore with seamless compatibility and acceleration.☆907Updated this week
- 人工智能培训课件资源☆148Updated 2 months ago
- 《多模态大模型:新一代人工智能技术范式》作者:刘阳,林倞☆259Updated last year
- ☆182Updated this week
- vLLM Documentation in Chinese Simplified / vLLM 中文文档☆153Updated last month
- ☆103Updated last year
- WWW2025 Multimodal Intent Recognition for Dialogue Systems Challenge☆130Updated last year
- Awesome LLM Benchmarks to evaluate the LLMs across text, code, image, audio, video and more.☆157Updated 2 years ago
- 大模型/LLM推理和部署理论与实践☆372Updated 6 months ago
- 个人总结的大模型、自然语言处理NLP、多模态、计算机视觉CV等方向paper的阅读笔记;收集到或者使用到的一些NLP、CV等领域的优秀开源仓库;其他:如数据集、评测leaderboard等☆60Updated 2 weeks ago
- 尝试自己从头写一个LLM,参考llama和nanogpt☆68Updated last year
- Llama3-Tutorial(XTuner、LMDeploy、OpenCompass)☆512Updated last year
- ☆108Updated 10 months ago
- Huggingface transformers的中文文档☆292Updated 2 years ago
- Inference code for LLaMA models☆128Updated 2 years ago
- A LLM Paper note list.☆22Updated last year
- unify-easy-llm(ULM)旨在打造一个简易的一键式大模型训练工具,支持Nvidia GPU、Ascend NPU等不同硬件以及常用的大模型。☆60Updated last year
- DeepSpeed Tutorial☆105Updated last year
- 模型压缩的小白入门教程,PDF下载地址 https://github.com/datawhalechina/awesome-compression/releases☆353Updated 2 months ago
- 从零搭建Agent框架(Build LLM ReAct Agent from scratch)☆112Updated last year
- TinyRAG☆410Updated 7 months ago
- 关于Transformer模型的最简洁pytorch实现,包含详细注释☆230Updated 2 years ago
- 训练一个对中文支持更好的LLaVA模型,并开源训练代码和数据。☆79Updated last year
- 解锁HuggingFace生态的百般用法☆98Updated last year
- personal chatgpt☆405Updated 3 weeks ago
- website☆462Updated 10 months ago
- 一些大语言模型和多模态模型的生态,主要包括跨模态搜索、投机解码、QAT量化、多模态量化、ChatBot、OCR☆196Updated this week
- 在RAG技术中,嵌入向量的生成和匹配是关键环节。本文介绍了一种基于CLIP/BLIP模型的嵌入服务,该服务支持文本和图像的嵌入生成与相似度计算,为多模态信息检索提供了基础能力。☆42Updated last year