Relph1119 / recommendation-system-practice-notesLinks
《推荐系统实践》代码与读书笔记,在线阅读地址:https://relph1119.github.io/recommendation-system-practice-notes
☆43Updated 5 years ago
Alternatives and similar repositories for recommendation-system-practice-notes
Users that are interested in recommendation-system-practice-notes are comparing it to the libraries listed below
Sorting:
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 5 years ago
- 推荐系统学习笔记☆210Updated 2 years ago
- ☆122Updated 4 years ago
- Recommend System☆29Updated 5 years ago
- 《推荐系统开发实战》代码及勘误☆60Updated 5 years ago
- 推荐系统从入门到实战☆167Updated 3 years ago
- 开源的各大比赛baseline☆376Updated 2 years ago
- 《机器学习:软件工程方法与实现》Method and implementation of machine learning software engineering☆187Updated 2 years ago
- 推荐系统学习资料、源码、及读书笔记☆133Updated 6 years ago
- 2018科大讯飞营销算法大赛(冠军方案)☆94Updated 5 years ago
- 机器学习竞赛信息聚合(Machine learning competition information aggregation)☆131Updated last year
- 500+ spark short code examples in jupyter notebook!☆101Updated 5 years ago
- 数据科学/人工智能比赛解决方案汇总☆532Updated 4 years ago
- 深度之眼《百面机器学习》训练营☆98Updated 5 years ago
- 该仓库主要记录 推荐系统 算法工程师相关的面试题☆576Updated last year
- 黑马头条推荐系统☆100Updated 5 years ago
- 本人多次机器学习与大数据竞赛Top5的经验总结,满满的干货,拿好不谢☆397Updated 4 years ago
- 记录我学习数据挖掘过程的笔记和见到的奇技☆121Updated 6 years ago
- 推荐系统竞赛TOP开源解决方案汇总。☆259Updated 3 years ago
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆186Updated 5 years ago
- [推荐系统] Based on the scoring data set, the recommendation system is built with FM and LR as the core(基于评分数据集,构建以FM和LR为核心的推荐系统).☆302Updated 3 years ago
- 机器学习&深度学习资料笔记&基本算法实现&资源整理(ML / CV / NLP / DM...)☆228Updated last year
- 推荐系统资料笔记收录/ Everything about Recommendation System. 专题/书籍/论文/产品/Demo☆173Updated 4 years ago
- 项亮的《推荐系统实践》的代码实现☆493Updated 4 years ago
- 优质的推荐算法资源汇总☆154Updated 3 years ago
- 广告点击率(CTR)预测经典模型 GBDT + LR 理解与实践(附数据 + 代码)☆91Updated 5 years ago
- ☆320Updated 4 years ago
- Python 3.6 下的推荐算法解析,尽量使用简单的语言剖析原理,相似度度量、协同过滤、矩阵分解等☆105Updated 7 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为15个章节,近20万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系sc…☆28Updated 6 years ago
- ☆102Updated 4 years ago