R-Stalker / xgboost-c-cplusplusLinks
c/c++ code for xgboost(train,predict,evaluate)
☆21Updated 7 years ago
Alternatives and similar repositories for xgboost-c-cplusplus
Users that are interested in xgboost-c-cplusplus are comparing it to the libraries listed below
Sorting:
- 这是一个基于参数服务器(Parameter Server)PS-Lite的分布式深度学习训练和预测框架。This is a model training and prediction framework.1) It includes a complete set of pr…☆29Updated 3 years ago
- A tutorial of building tensorflow serving service from scratch☆89Updated 2 years ago
- 2021 微信大数据挑战赛 复赛Rank23☆30Updated 4 years ago
- WSDM2022留存预测挑战赛 第1名解决方案☆98Updated 3 years ago
- 华为_DigiX_算法精英大赛——人口年龄属性预测_ Rank14 方案☆31Updated 6 years ago
- xgboost 源码分 析☆31Updated 8 years ago
- DNN framework based on ps-lite☆30Updated 4 years ago
- embedx 是基于 c++ 开发的、完全自研的分布式 embedding 训练和推理框架。它目前支持 图模型、深度排序、召回模型和图与排序、图与召回的联合训练模型等☆313Updated last year
- 2020腾讯广告算法大赛初赛rank6,复赛rank11队伍(wujie代码)☆12Updated 4 years ago
- 首届“马栏山”杯国际音视频算法大赛推荐赛道demo☆30Updated 3 years ago
- IJCAI-17 top1 solution☆65Updated 7 years ago
- ☆143Updated 4 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆105Updated 5 years ago
- train, evaluate and deploy model using tf-estimator☆48Updated 2 years ago
- 一些CTR模型和常见特征工程的方法☆26Updated 4 years ago
- ☆213Updated 9 months ago
- 利用lightgbm做(learning to rank)排序学习,包括数据处理、模型训练、模型决策可视化、模型可解释性以及预测等。Use LightGBM to learn ranking, including data processing, model trainin…☆277Updated 3 years ago
- machine learning algorithm☆163Updated 4 years ago
- Vector Search Engine base on BRPC + FAISS☆151Updated 6 years ago
- 零售电商客户流失模型,基于tensorflow,xgboost4j-spark,spark-ml实现LR,FM,GBDT,RF,进行模型效果对比,离线/在线部署方式总结☆67Updated 2 years ago
- This is a group project for E-commerce repeat buyers purchase prediction using machine learning while accounting for imbalance outcome fo…☆12Updated 5 years ago
- 阿里巴巴ESMM模型解读☆43Updated 5 years ago
- 2018年甜橙金融杯大数据建模大赛-初赛第四-复赛线上11-决赛9-复现top1解决方案-【二分类,风控】☆75Updated 5 years ago
- 2019中国高校大数据挑战赛-第二名解决方案☆80Updated 6 years ago
- 2018科大讯飞营销算法大赛(冠军方案)☆95Updated 6 years ago
- 参赛者需要根据给出的基金净值、基金业绩比较基准、对应指数行情、基金间相关性等数据,构建模型、算法进行训练。☆37Updated 7 years ago
- 字节跳动短视频理解比赛,代码带详细注释☆18Updated 6 years ago
- ☆46Updated 3 years ago
- xgboost在线预测☆30Updated 8 years ago