QHCV / easy-rlLinks
强化学习中文教程(蘑菇书),在线阅读地址:https://datawhalechina.github.io/easy-rl/
☆24Updated 2 years ago
Alternatives and similar repositories for easy-rl
Users that are interested in easy-rl are comparing it to the libraries listed below
Sorting:
- 真-极简强化学习(基于torch的强化学习框架pfrl)☆79Updated 3 years ago
- kinds of reinforcement learning model by Pytorch☆331Updated 2 years ago
- ☆62Updated 2 years ago
- Tutorial for Reinforcement Learning☆184Updated 3 years ago
- ☆379Updated this week
- An easier PyTorch deep reinforcement learning library.☆225Updated 5 months ago
- RL algorithms☆141Updated 4 years ago
- Reinforcement-Learning-Notes, start with MDP.☆223Updated 2 years ago
- 《强化学习-原理与Python实现》的Pytorch实现。☆60Updated 4 years ago
- [动手学强化学习]系列,基于pytorch。☆55Updated 4 years ago
- pytorch implementation of DQN/DDQN/Dueling_networ/D3QN for job shop scheudling problem☆70Updated 3 years ago
- ☆89Updated last year
- TD3 in Pytorch☆34Updated 3 years ago
- 动手学强化学习代码☆57Updated last year
- Reinforcement learning with PyTorch, inspired by MorvanZhou, change the framework from Tensorflow to PyTorch☆296Updated 5 years ago
- DDPG in Pytorch☆45Updated 3 years ago
- Reinforcement learning☆32Updated last week
- basic algorithms of reinforcement learning☆210Updated last year
- This is a reinforcement learning algorithm library. The code takes into account both performance and simplicity, with little dependence.☆100Updated 2 years ago
- ☆474Updated 7 months ago
- 指针网络+强化学习 解决旅行商(TSP)问题☆92Updated 3 years ago
- 多智能体强化学习☆98Updated 6 years ago
- D3QN Pytorch☆63Updated 3 years ago
- 强化学习第二版习题解答与代码案例 Solutions and codes for Reinforcement Learning second edition☆150Updated 4 years ago
- ☆65Updated last year
- 强化学习算法库,包含了目前主流的强化学习算法(Value based and Policy based)的代码,代码都经过调试并可以运行☆86Updated last year
- 本书作者是来自日本的Yutaro Ogawa(小川熊太郎),作者的github上源码是日文注释的,这个repository把它翻译成中文☆18Updated 4 years ago
- 多智能体强化学习(MARL)算法复现,包括QMIX,VDN,QTRAN、MAVEN等等☆200Updated 3 years ago
- Pytorch for Deep Reinforcement Learning☆248Updated 4 years ago
- 基于生物启发式算法的多智能体强化学习算法☆13Updated 4 years ago