NorwinYu / eleme_round2_baseline_pyLinks
智慧物流:新冠期间饿了么骑士行为预估 复赛 Baseline - Python 移植版本
☆14Updated 2 years ago
Alternatives and similar repositories for eleme_round2_baseline_py
Users that are interested in eleme_round2_baseline_py are comparing it to the libraries listed below
Sorting:
- 智慧物流:新冠期间饿了么骑士行为预估比赛第一轮,预测骑手下一步行动☆22Updated 5 years ago
- ☆10Updated 3 years ago
- 阿里天池智慧物流挑战赛-饿了吗新冠疫情骑士行为预估☆15Updated 5 years ago
- 1st solution for KDD Cup 2020 (RL track)☆61Updated 4 years ago
- 天池DCIC2020船只轨迹数据挖掘比赛算法阶段Rank 3解决方案:☆110Updated 3 years ago
- ☆23Updated 3 years ago
- 全球城市计算AI挑战赛☆62Updated 6 years ago
- The submission template for the Learning to Dispatch and Reposition Competition @ KDD2020.☆86Updated 4 years ago
- google ortools guide☆60Updated 6 years ago
- ☆277Updated 2 years ago
- RecommenderSystems: from 0 to practice. 包括推荐系统实践和深度推荐系统两部分☆17Updated 3 years ago
- HetETA: Heterogeneous Information Network Embedding for Estimating Time of Arrival☆112Updated 5 years ago
- 易观性别年龄预测第一名解决方案☆170Updated 6 years ago
- KDD CUP 2019 Baseline☆101Updated 6 years ago
- 2019天池大数据竞赛杭州市地铁流量流入流出预测 成绩27/2319 比赛地址https://tianchi.aliyun.com/competition/entrance/231708/introduction?spm=5176.12281957.1004.6.38b0…☆45Updated 6 years ago
- A dataset for understanding urban transportation. This is an urban traffic speed dataset, which consists of 214 anonymous road segments w…☆31Updated 7 years ago
- 天池全球城市计算AI挑战赛:A榜单模型12.28, B榜单模型12.53,多模型融合11.74(Top 3), C榜官方结果17.08(新人赛验证C榜可通过乘个衰减提升很多到12.00,A榜也有效果到11.88)☆40Updated 6 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆233Updated last year
- 2020 CCF BDCI 线上第一 解决方案代码☆43Updated 4 years ago
- ☆17Updated 6 years ago
- 京东全球运筹优化挑战赛/GOC 仓储网络智能库存管理[初赛]☆19Updated 6 years ago
- ☆21Updated 3 years ago
- 自己学习推荐系统过程中用到的代码☆50Updated 5 years ago
- 京东GOC城市物流运输车辆 智能调度☆16Updated 6 years ago
- CTR-Prediction☆14Updated 5 years ago
- Source code of queueing-based vehicle dispatching framework☆13Updated 6 years ago
- 公交车到站时间预测☆37Updated 7 years ago
- Illustrated Examples from Sutton and Barto☆36Updated 2 years ago
- deeplearning models implemented by pytorch FM, FFM, DeepFM, Wide&Deep, DCN, XDeepFM, FastText, TextCNN☆13Updated 5 years ago
- 城市交通流量时空预测---山东省数据应用(青岛)创新创业大赛。http://sdac.qingdao.gov.cn/common/cmptIndex.html☆36Updated 5 years ago