FNo0 / LIFT_for_NLPLinks
2018BDCI汽车行业用户观点主题及情感识别rank27
☆11Updated 7 years ago
Alternatives and similar repositories for LIFT_for_NLP
Users that are interested in LIFT_for_NLP are comparing it to the libraries listed below
Sorting:
- This repo is all the machine learning related project codes and their corresponding blog posts at the graduate level.☆322Updated 6 years ago
- 2018年"达观杯"文本智能处理挑战赛-长文本分类-rank4☆283Updated 5 years ago
- Rank6 决赛三等奖 2018 中国高校计算机大赛 大数据挑战赛 发粉漏丝☆19Updated 7 years ago
- BDCI 2018 汽车行业用户观点主题及情感识别 决赛一等奖方案☆432Updated 7 years ago
- NLP research:基于tensorflow的nlp深度学习项目,支持文本分类/句子匹配/序列标注/文本生成 四大任务☆196Updated last year
- The code for CCF-BDCI-Sentiment-Analysis-Baseline☆430Updated 3 years ago
- 2018达观杯文本智能处理挑战赛 Top10解决方案(10/3830)☆215Updated 7 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆76Updated 7 years ago
- AI Challenger 2018 细粒度用户评论情感分析,排名17th,基于Aspect Level 思路的解决方案☆328Updated 7 years ago
- 嵌入Word2vec词向量的RNN+ATTENTION中文文本分类☆153Updated 5 years ago
- 在Keras下微调Bert的一些例子;some examples of bert in keras☆657Updated 6 years ago
- ☆61Updated 6 years ago
- 2019中国高校计算机大赛——大数据挑战赛 第15名 WriteUp☆30Updated 6 years ago
- 2018达观杯长文本分类智能处理挑战赛 18解决方案☆153Updated 6 years ago
- CCF-BDCI 2018年汽车行业用户观点主题及情感识别挑战赛 第6名解决方案☆141Updated 7 years ago
- ai challenger 2018细粒度情感分类第一名解决方案, A training framework itegrating tensorflow and pytorch☆577Updated 3 years ago
- 互联网新闻情感分析赛题baseline☆42Updated 6 years ago
- several methods for text classification☆187Updated 8 years ago
- 2018年蚂蚁金服金融大脑赛题分享☆152Updated 7 years ago
- ’达观杯‘文本智能处理挑战赛,文本分类任务的实现,包括一些传统的监督学习算法和深度学习算法,主要基于sklearn/xgb/lgb/pytorch包实现。☆261Updated 7 years ago
- Lstm-crf,Lattice-CRF,bert-ner及近年ner相关论文follow☆568Updated 7 years ago
- tensorflow TxetCnn TextRNN 使用Textcnn、Textrnn对文本进行分类☆58Updated 7 years ago
- 复盘所有NLP比赛的TOP方案,只关注NLP比赛,持续更新中!☆48Updated 6 years ago
- 本实验,是用BERT进行中文情感分类,记录了详细操作及完整程序☆375Updated 6 years ago
- bert for chinese text classification☆141Updated 7 years ago
- 神策杯2018高校算法大师赛(中文关键词提取)第二名代码方案☆309Updated 5 years ago
- sentiment-analysis☆70Updated 6 years ago
- ☆86Updated 5 years ago
- ☆96Updated 5 years ago
- details☆263Updated 7 years ago