Dikea / Dialog-System-with-Task-Retrieval-and-Seq2seqLinks
「2018 JDDC」 对话大赛亚军解决方案
☆405Updated 6 years ago
Alternatives and similar repositories for Dialog-System-with-Task-Retrieval-and-Seq2seq
Users that are interested in Dialog-System-with-Task-Retrieval-and-Seq2seq are comparing it to the libraries listed below
Sorting:
- 2018-JDDC大赛第4名的解决方案☆234Updated 7 years ago
- The code for CCF-BDCI-Sentiment-Analysis-Baseline☆430Updated 3 years ago
- 利用预训练的中文模型实现基于bert的语义匹配模型 数据集为LCQMC官方数据☆198Updated 6 years ago
- QANet+DuReader中文机器阅读理解☆221Updated 7 years ago
- 将百度ernie的paddlepaddle模型转成tensorflow模型☆178Updated 6 years ago
- 文本匹配的相关模型DSSM,ESIM,ABCNN,BIMPM等,数据集为LCQMC官方数据☆470Updated 3 years ago
- 基于siamese-lstm的中文句子相似度计算☆129Updated 7 years ago
- BDCI 2018 汽车行业用户观点主题及情感识别 决赛一等奖方案☆432Updated 7 years ago
- 问题句子相似度计算,即给定客服里用户描述的两句话,用算法来判断是否表示了相同的语义。☆370Updated 5 years ago
- 2018百度机器阅读理解技术竞赛☆168Updated 6 years ago
- 中文自然语言的实体抽取和意图识别(Natural Language Understanding),可选Bi-LSTM + CRF 或者 IDCNN + CRF☆188Updated 7 years ago
- use ELMo in chinese environment☆105Updated 7 years ago
- CCL2018客服领域用户意图分类冠军1st方案☆149Updated 3 years ago
- 基于BERT的中文序列标注☆140Updated 7 years ago
- the demo for bert☆142Updated 6 years ago
- bert for chinese text classification☆141Updated 7 years ago
- details☆263Updated 7 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆153Updated 7 years ago
- 中文语料 Bert finetune(Fine-tune Chinese for BERT)☆82Updated 6 years ago
- Deep contextualized word representations for Chinese☆151Updated 6 years ago
- 2018年"达观杯"文本智能处理挑战赛-长文本分类-rank4☆283Updated 5 years ago
- 基于webQA的开放域问答系统☆91Updated 8 years ago
- 使用BERT做文本相似度☆63Updated 6 years ago
- 中文预训练模型生成字向量学习,测试BERT,ELMO的中文效果☆100Updated 6 years ago
- 第三届魔镜杯 智能客服问题相似性算法设计 第12名解决方案☆148Updated 6 years ago
- AI-Challenger Baseline 细粒度用户评论情感分析☆231Updated 7 years ago
- self complement of Sentence Similarity compute based on cilin, hownet, simhash, wordvector,vsm models,基于同义词词林,知网,指纹,字词向量,向量空间模型的句子相似度计算。☆365Updated 7 years ago
- 序列化标注工具,基于PyTorch实现BLSTM-CNN-CRF模型,CoNLL 2003 English NER测试集F1值为91.10%(word and char feature)。☆364Updated 7 years ago
- AI Challenger 2018 细粒度用户评论情感分析,排名17th,基于Aspect Level 思路的解决方案☆328Updated 7 years ago
- baseline system of knowledge driven dialogue competition☆269Updated 6 years ago