DengBoCong / prompt-tuningLinks
A pipeline for Prompt-tuning
☆42Updated 3 years ago
Alternatives and similar repositories for prompt-tuning
Users that are interested in prompt-tuning are comparing it to the libraries listed below
Sorting:
- This is a simple implementation of how to leverage a Language Model for a prompt-based learning model☆44Updated 3 years ago
- 图网络和少样本学习在自然语言理解领域的前沿综述。本文旨在探索自然语言理解领域中(主要探索了命名实体识别,关系抽取)一些深度学习前沿的应用(主要探索了结合图神经网络和少样本学习场景的方法)共计15篇顶会论文(EMNLP,AAAI,ACL,COLING)。☆18Updated 4 years ago
- 仓库主要记录 NLP 算法工程师相关的顶会论文研读笔记【文本匹配篇】☆13Updated 2 years ago
- COVID-19 Related NLP Papers☆30Updated 3 years ago
- Data for the paper "An Emotion Cause Corpus for Chinese Microblogs with Multiple-User Structures" (TALLIP).☆21Updated 5 years ago
- Survey of NLP+AI Conferences and Journals for NLPers☆38Updated last month
- Prompt-learning methods used BERT4Keras (PET, EFL and NSP-BERT), both for Chinese and English.☆29Updated 2 years ago
- 该仓库主要记录 NLP 算法工程师相关的顶会论文研读笔记【知识图谱篇】☆20Updated 3 years ago
- ☆28Updated 2 years ago
- 该仓库主要记录 NLP 算法工程师相关的顶会论文研读笔记【信息抽取篇】☆29Updated 2 years ago
- NLP方向的论文代码复现☆13Updated 4 years ago
- Code for Label Semantics for Few Shot Named Entity Recognition☆55Updated 2 years ago
- 该仓库主要记录 NLP 算法工程师相关的 搜索引擎 学习笔记☆13Updated 3 years ago
- CMIVQA☆18Updated last year
- CCL2024 Chinese Essay Rhetoric Recognition and Understanding☆16Updated 8 months ago
- A concise implementation of SimCSE☆17Updated 3 years ago
- 百度2021年语言与智能技术竞赛多形态信息抽取赛道事件抽取部分torch版baseline☆78Updated 4 years ago
- 一个基于transformers的自定义命名实体识别模型示例☆17Updated 3 years ago
- WoBERT Pytorch 版本,中文词汇级Bert:WoBERT学习☆21Updated 4 years ago
- 商品标题实体识别☆23Updated 3 years ago
- Resources about Aspect-based Sentiment Analysis (ABSA)☆118Updated 2 years ago
- Roadmap for NLP 涵盖NLP的理论知识、应用场景和工程实践等☆45Updated 2 years ago
- [EMNLP'22] Title2Event: Benchmarking Open Event Extraction with a Large-scale Chinese Title Dataset☆19Updated 2 years ago
- 复习论文《A Frustratingly Easy Approach for Joint Entity and Relation Extraction》☆32Updated 4 years ago
- 本课程面对具有一定机器学习基础,但尚未入门的NLPer或经验尚浅的NLPer,尽力避免陷入繁琐枯燥的公式讲解中,力求用代码展示每个模型背后的设计思想,同时也会带大家梳理每个模块下的技术演变,做到既知树木也知森林。☆87Updated last year
- ☆25Updated 3 years ago
- ☆26Updated 9 months ago
- ☆19Updated 4 years ago
- 基于Pytorch实现的中文文本分类脚手架,以及常用模型对比。☆18Updated 4 years ago
- Official Code for "PPT: Pre-trained Prompt Tuning for Few-shot Learning". ACL 2022☆108Updated 2 years ago