CV-deeplearning / calculate_detect_mAPLinks
计算目标检测的指标:mAP,检出率,漏检率
☆11Updated 4 years ago
Alternatives and similar repositories for calculate_detect_mAP
Users that are interested in calculate_detect_mAP are comparing it to the libraries listed below
Sorting:
- 针对不同旋转矩形框标签格式的转换(txt和xml)☆78Updated 4 years ago
- ☆72Updated last year
- Detection_Augmentation☆25Updated 2 years ago
- KLD实现旋转目标检测☆48Updated 2 years ago
- 可以训练yolov5(v6.0)、yolox、小型网络,添加注意力机制☆66Updated 3 years ago
- 使用retinaface完成车牌关键点检测,并在tensorRT下部署☆40Updated 3 years ago
- ☆105Updated 3 years ago
- 🚀🚀🚀YOLOC is Combining different modules to build an different Object detection model.Including YOLOv3、YOLOv4、Scaled_YOLOv4、YOLOv5、YOLO…☆72Updated 2 years ago
- 对于小目标的检测和识别☆27Updated 6 years ago
- yolov5 deploy 3559☆33Updated 3 years ago
- yolov5+doublehead + MultiLabel+detection☆24Updated 3 years ago
- rotated bbox detection. inspired by https://github.com/hukaixuan19970627/YOLOv5_DOTA_OBB, thanks hukaixuan19970627.☆90Updated 2 years ago
- 将YOLOv5-Lite代码中的head更换为YOLOX head☆22Updated 3 years ago
- yolov5 onnx caffe☆88Updated 4 years ago
- VOC类型数据 集操作库函数☆52Updated 5 years ago
- 适用于目标检测VOC格式的数据增强工具包,包含各种像素级增广方式和形变增广,如:rotate、crop、rotation、flip、tile、滑动窗口、mosaic等;数据格式转换:coco_2_voc、xml_for_u_yolo等☆20Updated 4 years ago
- ☆68Updated 4 years ago
- 本仓库主要包含了针对目标检测数据集的增强手段和源码:图像的旋转,镜像,裁剪,亮度/对比度的变换等☆135Updated 4 years ago
- Using model pruning method to obtain compact models Pruned-YOLOv5 based on YOLOv5.☆60Updated 4 years ago
- Pytorch复现YOLOv3,使用最新的DIOU loss训练☆70Updated 4 years ago
- 基于pytorch版ssd进行改进注入CBAM空间通道注意力机制,加入FPN,类别损失函数改为focalloss☆41Updated 4 years ago
- 使用opencv部署DBNet文字检测,包含C++和Python两种版本的实现☆33Updated 4 years ago
- 布匹缺陷识别练习赛☆46Updated 4 years ago
- 基于yoloV5-V6系列,train_palte添加多头检测。train_key添加关键点检测算法。☆45Updated 2 years ago
- Retrain DeepSort with ShuffleNet.☆29Updated 4 years ago
- 鉴于该 填鸭式 方法对小目标的数据增强的详细的描述较少,故重新整理了代码,并添加了说明。按照md文件的说明,应该可以正常的运行☆46Updated 3 months ago
- ☆52Updated 2 years ago
- yolov5 v1版本中文注释☆58Updated 4 years ago
- ☆23Updated 4 years ago
- ppyolo in pytorch. 44.8% box mAP.☆109Updated 3 years ago