CLUEbenchmark / SuperCLUE-Safety
SC-Safety: 中文大模型多轮对抗安全基准
☆119Updated 11 months ago
Alternatives and similar repositories for SuperCLUE-Safety:
Users that are interested in SuperCLUE-Safety are comparing it to the libraries listed below
- Official github repo for SafetyBench, a comprehensive benchmark to evaluate LLMs' safety. [ACL 2024]☆190Updated 7 months ago
- ShieldLM: Empowering LLMs as Aligned, Customizable and Explainable Safety Detectors [EMNLP 2024 Findings]☆173Updated 4 months ago
- 本文提出了一个基于“文心一言”的中国LLMs的安全评估基准,其中包括8种典型的安全场景和6种指令攻击类型。此外,本文还提出了安全评估的框架和过程,利用手动编写和收集开源数据的测试Prompts,以及人工干预结合利用LLM强大的评估能力作为“共同评估者”。☆22Updated last year
- 复旦白泽大模型安全基准测试集(2024年夏季版)☆32Updated 6 months ago
- 基于ChatGPT构建的中文self-instruct数据集☆113Updated last year
- "他山之石、可以攻玉":复旦白泽智能发布面向国内开源和国外商用大模型的Demo数据集JADE-DB☆364Updated 2 months ago
- Chinese safety prompts for evaluating and improving the safety of LLMs. 中文安全prompts,用于评估和提升大模型的安全性。☆925Updated 11 months ago
- 面向中文大模型价值观的评估与对齐研究☆491Updated last year
- JailBench:大型语言模型越狱攻击风险评测中文数据集☆37Updated 7 months ago
- Flames is a highly adversarial benchmark in Chinese for LLM's harmlessness evaluation developed by Shanghai AI Lab and Fudan NLP Group.☆40Updated 9 months ago
- A Massive Multi-Level Multi-Subject Knowledge Evaluation benchmark☆100Updated last year
- ☆159Updated last year
- 怎么训练一个LLM分词器☆140Updated last year
- 中文通用大模型开放域多轮 测评基准 | An Open Domain Benchmark for Foundation Models in Chinese☆78Updated last year
- Dataset and evaluation script for "Evaluating Hallucinations in Chinese Large Language Models"☆118Updated 8 months ago
- 大模型多维度中文对齐评测基准 (ACL 2024)☆359Updated 6 months ago
- ☆125Updated last year
- SuperCLUE-Agent: 基于中文原生任务的Agent智能体核心能力测评基准☆81Updated last year
- ☆162Updated last year
- Official github repo for AutoDetect, an automated weakness detection framework for LLMs.☆41Updated 7 months ago
- ☆225Updated 9 months ago
- 专注于中文领域大语言模型,落地到某个行业某个领域,成为一个行业大模型、公司级别或行业级别领域大模型。☆115Updated 5 months ago
- make LLM easier to use☆59Updated last year
- 中文大语言模型评测第一期☆108Updated last year
- [NAACL'24] Self-data filtering of LLM instruction-tuning data using a novel perplexity-based difficulty score, without using any other mo…☆337Updated 5 months ago
- 中文 Instruction tuning datasets☆126Updated 10 months ago
- MEASURING MASSIVE MULTITASK CHINESE UNDERSTANDING☆88Updated 10 months ago
- Light local website for displaying performances from different chat models.☆85Updated last year
- Awesome LLM Benchmarks to evaluate the LLMs across text, code, image, audio, video and more.☆129Updated last year
- 中文大语言模型评测第二期☆70Updated last year