9reyson / FatigueDrivingReco
基于人眼状态的疲劳驾驶识别系统
☆30Updated 10 years ago
Related projects ⓘ
Alternatives and complementary repositories for FatigueDrivingReco
- 疲劳驾驶检测☆27Updated 5 years ago
- 基于Landmark计算哈欠、眨眼、左顾右盼,来判定疲劳驾驶 、危险驾驶☆25Updated 5 years ago
- ☆18Updated 5 years ago
- 基于视频的烟火检测☆100Updated 6 years ago
- 开源视频人脸跟踪算法,基于mtcnn人脸检测+onet人脸跟踪,在i7-9700k的cpu检测速度可高达250fps☆220Updated 4 years ago
- 图片烟雾识别☆60Updated 8 years ago
- car detection and counting based on frame difference. 车辆检测与车流量统计☆78Updated 5 years ago
- 本项目是用于判断是否闭眼或者张开嘴哈欠和吸烟打电话等手势行为, 功能涵盖7类情绪识别,眨眼判断,哈欠判断,吸烟,打电话等, 达到危险驾驶检测的功能☆50Updated 3 years ago
- 移动端实时疲劳驾驶检测☆41Updated 3 years ago
- Face Recognition Project on mobile phone, using ncnn to deploy it.☆77Updated 4 years ago
- 用opencv写的一个人的皮肤检测器,里面封装了多种算法☆58Updated 7 years ago
- 用yolo2来识别车辆 identify vehicles with yolo2☆44Updated 6 years ago
- 计算机视觉课程设计作业,检测图像中的行人目标并跟踪。☆102Updated 9 years ago
- Detect and track vehicles in video☆51Updated 6 years ago
- 虹膜识别-虹膜分割代码☆24Updated 5 years ago
- A warning video system of whether the people in the video wear helmet, extending YOLO.☆49Updated 4 years ago
- yolov2-Tiny转到NCNN下,移植到Android端的demo☆32Updated 6 years ago
- it contains some open source face detection and recognition code☆72Updated 3 years ago
- Realtime face and mask detection☆50Updated 7 years ago
- A simple Chinese LPR(License Plate Recognition) implementation and use less than one thousand lines of code.☆36Updated 7 years ago
- Official implementation for paper "A Real-Time and Long-Term Face Tracking Method Using Convolutional Neural Network and Optical Flow for…☆201Updated 2 years ago
- K210 YOLO_V2 FACE DETECTION☆23Updated 5 years ago
- implementation of ncnn's mobileFacenet☆191Updated 5 years ago
- 基于深度学习的驾驶员状态检测,不仅仅可以识别出疲劳驾驶,还能够识别出各种各 样的状态☆274Updated 7 years ago
- Eye state classification using OpenCV and DLib to estimate Percentage Eye Closure (PERCLOS) and alert a drowsy person (such as a driver).☆53Updated 5 years ago
- 基于tensorflow的手势识别和分类代码☆202Updated 6 years ago
- drowsiness detection☆138Updated 5 years ago
- 移动端快速人脸检测模型是基于RetinaFace的优化去掉stride8以及stride32和stride16的landmark 在CPU位Intel(R) Pentium(R) CPU G2020 @ 2.90GHz(2900 MHz)的设备中人脸检测可达到40ms/帧☆15Updated 5 years ago