9reyson / FatigueDrivingReco
基于人眼状态的疲劳驾驶识别系统
☆32Updated 10 years ago
Related projects ⓘ
Alternatives and complementary repositories for FatigueDrivingReco
- 疲劳驾驶检测☆27Updated 5 years ago
- This is an implematation project of face detection and recognition. The face detection using MTCNN algorithm, and recognition using Ligh…☆148Updated 6 years ago
- ☆18Updated 5 years ago
- 基于YOLOV3开发的智能视频监控模块(DLL)。支持视频有效片段提取、目标对象是否出现检测、目标对象出现次数,比如计数人出现多少次☆59Updated 5 years ago
- 基于视频的烟火检测☆100Updated 6 years ago
- 变电站作业管控平台。包括人脸识别考勤,移动目标跟踪,越线检测,安全措施检测,姿态识别等功能。☆92Updated 5 years ago
- 开源视频人脸跟踪算法,基于mtcnn人脸检测+onet人脸跟踪,在i7-9700k的cpu检测速度可高达250fps☆220Updated 4 years ago
- A warning video system of whether the people in the video wear helmet, extending YOLO.☆49Updated 4 years ago
- it contains some open source face detection and recognition code☆72Updated 3 years ago
- 移动端实时疲劳驾驶检测☆41Updated 3 years ago
- 本项目是用于判断是否闭眼或者张开嘴哈欠和吸烟打电话等手势行为, 功能涵盖7类情绪识别,眨眼判断,哈欠判断,吸烟,打电话等, 达到危险驾驶检测的功能☆49Updated 3 years ago
- 基于深度学习的驾驶员状态检测,不仅仅可以识别出疲劳驾驶,还能够识别出各种各样的状态☆271Updated 7 years ago
- yolov2-Tiny转到NCNN下,移植到Android端的demo☆32Updated 6 years ago
- Detect and track vehicles in video☆51Updated 6 years ago
- 基于Landmark计算哈欠、眨眼、左顾右盼,来判定疲劳驾驶 、危险驾驶☆25Updated 5 years ago
- 图片烟雾识别☆60Updated 8 years ago
- MTCNN face detection implementation base on NCNN☆181Updated 5 years ago
- OpenPose的简单实现☆150Updated 7 years ago
- CNN训练与测试人脸戴眼镜与否的图片分类(TensorFlow)☆30Updated 6 years ago
- 基于RetinaFace的目标检测方法,适用于人脸、缺陷、小目标、行人等☆103Updated 4 years ago
- Official implementation for paper "A Real-Time and Long-Term Face Tracking Method Using Convolutional Neural Network and Optical Flow for…☆201Updated 2 years ago
- 基于红外相机和人脸检测的体温监测告警系统☆38Updated 3 years ago
- 基于深度学习高性能中文车牌识别 (python实现)☆25Updated 5 years ago
- LBP级联+CNN 回归定位车牌☆115Updated 7 years ago
- 华为海思hi系列芯片使用的NNIE推理框架教程☆60Updated 5 months ago
- 针对移动端的人脸识别需求,训练测试一些相关的小模型实验。☆27Updated 6 years ago
- 深度学习☆24Updated 6 years ago
- 基于SSD+Resnet+CTC的中文车牌检测识别☆35Updated 5 years ago
- train mtcnn head detector☆90Updated 5 years ago
- CNN+LSTM; Video classification; Four categories(Normal; Smoking; Using mobile; Off seat)☆42Updated 6 years ago