0zhangsan0 / Digital-Vehicle-Competition
2023年创新组赛题一:基于数据驱动的动力电池健康状态评估与剩余寿命预测
☆19Updated 5 months ago
Related projects ⓘ
Alternatives and complementary repositories for Digital-Vehicle-Competition
- 使用改进的GAN去生成数据,并使用生成的数据去训练LSTM网络,从而提高预测电池SOH的准确率☆52Updated 2 years ago
- ☆49Updated 4 years ago
- 锂电池数据集 CALCE☆138Updated 5 months ago
- 新能源汽车应用场景,基于Python,通过神经网络训练锂离子电池使用相关数据,预测电池当前最大容量☆35Updated 5 years ago
- ☆24Updated 5 years ago
- Analysis for NASA data sets☆125Updated 6 months ago
- ☆18Updated 4 years ago
- Battery Cycle Life Prediction. vloong 电池寿命预测精度排名第二方案.☆21Updated 2 years ago
- A code library and benchmark study on SOH estimation of lithium-ion battery☆81Updated 10 months ago
- 这是我关于使用深度学习方法去评估锂电池健康状态(SOH)的一点点工作,对象是NASA的锂电池容量衰退数据集,分析了加入锂电池运行的可监测数据对SOH的影响☆31Updated last year
- RUL Prognostics Method Based on Real Time Updating of LSTM Parameters☆20Updated 6 years ago
- Attention-based CNN-BiLSTM for SOH prediction of lithium-ion batteries☆77Updated last year
- Lithium ion battery state of health estimation and remaining useful life prediction using ELM☆54Updated 3 years ago
- Comparison of various transfer learning models with the hybridization of an FCNN for battery RUL prediction☆43Updated last year
- This research provides a prognostic framework for off-line SOH estimation of Li-ion battery. With a CNN-Transformer architecture, this pr…☆74Updated last year
- Battery data processing.☆26Updated last year
- This paper summarizes a deep learning-based approach with an LSTM trained on the widely used Oxford battery degradation dataset and the h…☆50Updated 7 months ago
- ☆34Updated last year
- Code for "Machine learning pipeline for battery state-of-health estimation"☆59Updated 3 years ago
- A code library for reading and preprocessing public battery dataset☆35Updated 3 months ago
- TFDSUNet: Time-Frequency Dual-Stream Uncertainty Network for Battery SOH/SOC Prediction☆38Updated last year
- Implementation of a model that predicts the SoH of batteries using the NASA Battery Dataset☆101Updated 4 years ago
- Code for paper "An end-to-end neural network framework for SOH estimation and RUL prediction of lithium battery"☆102Updated 3 years ago
- An Informer-LSTM model for State-of-Charge Estimation of Lithium-Ion Batteries☆70Updated last year
- This is the code for battery RUL early prediction☆29Updated 3 years ago
- ☆12Updated 3 years ago
- ☆8Updated 2 years ago
- ☆10Updated 2 years ago
- Prediction of battery lifetimes based on a Recurrent Neural Network (RNN) architecture. Data publicly available here: https://doi.org/10.…☆21Updated 4 years ago
- The project focused on "Battery Remaining Useful Life (RUL) Prediction using a Data-Driven Approach with a Hybrid Deep Model combining Co…☆54Updated 5 months ago