0x0cafe / SparkiForestLinks
☆17Updated 6 years ago
Alternatives and similar repositories for SparkiForest
Users that are interested in SparkiForest are comparing it to the libraries listed below
Sorting:
- ccf2016 sougou final winner solution☆358Updated 8 years ago
- ☆19Updated 7 years ago
- ATEC蚂蚁开发者大赛-支付风险识别-Rank7☆86Updated 7 years ago
- Machine Learning Trick : GBDT_Feature Blending Stacking CascadeForest☆372Updated 8 years ago
- a python code of applying GBDT+LR for CTR prediction☆337Updated 7 years ago
- implement some fancy text classification models by using keras☆98Updated 7 years ago
- gbdt+lr☆160Updated 6 years ago
- A simple DeepFM.☆102Updated 7 years ago
- some usefult utils like change tools and city lon and lat☆59Updated 7 years ago
- 利用Encoder对二分类任务的序列数据进行概率预测☆51Updated 5 years ago
- 这是BDCI2018的联通赛题第一名解决方案☆300Updated 7 years ago
- 1st Place Season one & 6th Place Season two☆153Updated 8 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- implement fm demo with python☆51Updated 6 years ago
- ☆65Updated 6 years ago
- 基于深度学习的CTR预估,从FM推演各深度学习CTR预估模型(附代码)☆208Updated 7 years ago
- JData算法大赛☆31Updated 8 years ago
- Tensorflow2.x implementations of CTR(LR、FM、FFM)☆72Updated 4 years ago
- 招商银行信用卡中心校园大赛:消费金融场景下的用户购买预测 Rank 3rd☆72Updated 7 years ago
- This is a kaggle challenge project called Display Advertising Challenge by CriteoLabs at 2014.这是2014年由CriteoLabs在kaggle上发起的广告点击率预估挑战项目。☆361Updated 6 years ago
- a tensorflow version of Word2Vec with a new loss☆115Updated 8 years ago
- 马上AI全球挑战者大赛 rank 1st☆257Updated 7 years ago
- AI100文本分类竞赛代码。从传统机器学习到深度学习方法的测试☆253Updated 8 years ago
- use xgboost and lr model for text classification. xgboost is used to be a feature transform for LR☆44Updated 8 years ago
- 甜橙金融初赛Rank1☆137Updated 7 years ago
- ☆204Updated 8 years ago
- Hybrid model of Gradient Boosting Trees and Logistic Regression (GBDT+LR) on Spark☆88Updated 7 years ago
- 第三届融360天机智能金融算法挑战赛-第二题:特征挖掘☆115Updated 6 years ago
- CCF2016 - TNT_000二等奖作品☆87Updated 9 years ago
- 招商银行信用卡中心 消费金融场景下的用户购买预测 rank1☆211Updated 6 years ago