xuanyuansen / scalaLSTM
Using scala to implement tiny LSTM, mainly focusing on the BPTT process of training the network.
☆20Updated 8 years ago
Alternatives and similar repositories for scalaLSTM:
Users that are interested in scalaLSTM are comparing it to the libraries listed below
- MXNet for CTR☆51Updated 7 years ago
- Parallel Gradient Boosting Decision Trees☆21Updated 8 years ago
- 科赛 携程出行产品未来14个月销量预测 第2名☆62Updated 7 years ago
- simple multi-class GBDT☆15Updated 10 years ago
- IJCAI-18 阿里妈妈搜索广告转化预测☆53Updated 6 years ago
- 7th in a competition organised by ICT☆24Updated 9 years ago
- Recommender-In-Detail is a package which offers detailed implementations of state-of-the-art techniques and basic methods in recommendati…☆19Updated 5 years ago
- Using gbdt+lr in recommend system and comparing the auc of lr, gbdt, gbdt+lr.☆24Updated 7 years ago
- ☆20Updated 8 years ago
- 一个分布式的高性能Word2Vec实现☆15Updated 9 years ago
- Classic recommendation algorithms implementation☆42Updated 3 years ago
- ☆27Updated 7 years ago
- code exercise: dbscan(ballTree improve) | ctr(ftrl) | text classification(bayes..) | kmeans | general LR |..☆26Updated 8 years ago
- CCF_大数据精准营销中搜狗用户画像挖掘☆17Updated 7 years ago
- this is my presentaion area .个人演讲稿展示区,主要展示一些平时的个人演讲稿或者心得之类的,☆57Updated 4 years ago
- RankNet on TensorFlow☆22Updated 7 years ago
- Distributed FM and LR based on Rabit with Lbfgs☆27Updated 8 years ago
- Notes on Logistic Regression and OWLQN☆26Updated 7 years ago
- ☆93Updated 2 years ago
- pairwise learning to rank with logistic regression☆19Updated 8 years ago
- ☆37Updated 8 years ago
- implementation of factorization machine, support classification.☆19Updated 6 years ago
- 通过对于现有开源分布式机器学习工具的整合(主要是基于参数服务器的logistic regression,xgboost,FFM,FM ),打造一个工业级的,可以线上使用的点击率预估流水线☆26Updated 7 years ago
- An implementation of GBDT+FM☆24Updated 7 years ago
- ALI-IJCAI-AD☆18Updated 6 years ago
- 第一届腾讯社交广告高校算法大赛Tencent_2017_contest☆24Updated 6 years ago
- 该项目是关于机器学习经典书籍《Pattern Recognition and Machine Learning》的学习笔记,我用python实现了书中的一些实例,希望帮助感兴趣的人更好的理解☆77Updated 7 years ago
- 2018年腾讯广告算法大赛Rank10代码:深 度部分☆68Updated 6 years ago