xuanyuansen / scalaLSTMLinks
Using scala to implement tiny LSTM, mainly focusing on the BPTT process of training the network.
☆20Updated 9 years ago
Alternatives and similar repositories for scalaLSTM
Users that are interested in scalaLSTM are comparing it to the libraries listed below
Sorting:
- simple multi-class GBDT☆15Updated 11 years ago
- 一个分布式的高性能Word2Vec实现☆15Updated 10 years ago
- 科赛 携程出行产品未来14个月销量预测 第2名☆62Updated 8 years ago
- LSTM and GRU in JAVA☆117Updated 6 years ago
- Parallel Gradient Boosting Decision Trees☆21Updated 9 years ago
- xgboost在线预测☆30Updated 8 years ago
- Time series prediction using LSTM classifier☆284Updated 8 years ago
- ☆94Updated 3 years ago
- A recommend system forked from APEX☆83Updated 11 years ago
- ALI-IJCAI-AD☆18Updated 7 years ago
- 7th in a competition organised by ICT☆24Updated 10 years ago
- A SimRank algorithm implementation using Spark☆48Updated 11 years ago
- 迁移学习☆18Updated 7 years ago
- pairwise learning to rank with logistic regression☆19Updated 9 years ago
- someCode with tianchi☆25Updated 10 years ago
- MXNet for CTR☆50Updated 8 years ago
- EM algorithm☆60Updated 10 years ago
- ☆20Updated 9 years ago
- My paper, note and anything in text.☆34Updated 6 years ago
- 基于sklearn,强化Pipeline和FeatureUnion两个类。对FeatureUnion类,使其支持部分数据处理;对两者,增加特征转换行为记录的功能。☆29Updated 9 years ago
- IJCAI-17 口碑商家客流量预测☆102Updated 8 years ago
- 1st Place Solution for TianChi-Industry4.0-Competition☆172Updated 8 years ago
- logistic regression model by ftrl based on ps-lite(parameter server)☆34Updated 9 years ago
- 通过对于现有开源分布式机器学习工具的整合(主要是基于参数服务器的logistic regression,xgboost,FFM,FM ),打造一个工业级的,可以线上使用的点击率预估流水线☆26Updated 8 years ago
- RankNet on TensorFlow☆21Updated 8 years ago
- Four styles of encoder decoder model by Python, Theano, Keras and Seq2Seq☆279Updated 8 years ago
- Examples of how to do feature engineering and Xgboost parameter tuning☆48Updated 9 years ago
- libffm with ftrl updater☆94Updated 8 years ago
- An implementation of GBDT+FM☆24Updated 8 years ago
- 2017天池口碑商家客流量预测☆118Updated 7 years ago