xqyww123 / Isa-REPL
Isabelle REPL
☆19Updated last week
Alternatives and similar repositories for Isa-REPL:
Users that are interested in Isa-REPL are comparing it to the libraries listed below
- A proof assistant adapter designed for machine learning☆15Updated last month
- Proof recording for Lean 3☆26Updated 3 years ago
- Formalization of IMO shortlist problems in Lean 4☆14Updated last month
- ☆30Updated 3 months ago
- Formalizing Euclidean Geometry in Lean☆29Updated 10 months ago
- Examples using MetaProgramming for writing tactics etc.☆18Updated this week
- ☆40Updated this week
- A Machine-to-Machine Interaction System for Lean 4.☆51Updated 2 weeks ago
- A static analysis tool for Lean 4.☆60Updated 3 weeks ago
- ProofNet dataset ported into Lean 4☆19Updated 9 months ago
- An evaluation benchmark for undergraduate competition math in Lean4, Isabelle, Coq, and natural language.☆83Updated this week
- Code for the paper: Proving Theorems Recursively☆11Updated 8 months ago
- ☆11Updated 10 months ago
- https://albertqjiang.github.io/Portal-to-ISAbelle/☆53Updated last year
- A simple REPL for Lean 4, returning information about errors and sorries.☆101Updated last week
- ImProver: Agent-Based Automated Proof Optimization☆23Updated this week
- Catalog Of Math Problems Formalized In Lean☆130Updated this week
- ☆27Updated 3 years ago
- The official repository for the paper Multilingual Mathematical Autoformalization☆33Updated 8 months ago
- Verified efficient algorithms in Lean4.☆27Updated 2 months ago
- llmstep: [L]LM proofstep suggestions in Lean 4.☆122Updated last year
- Experiments in automation for Lean☆91Updated this week
- Proof artifact co-training for Lean☆42Updated 2 years ago
- ☆21Updated last year
- Mathport is a tool for porting Lean3 projects to Lean4☆43Updated 2 months ago
- Neural theorem proving evaluation via the Lean REPL☆18Updated 3 months ago
- LeanEuclid is a benchmark for autoformalization in the domain of Euclidean geometry, targeting the proof assistant Lean.☆84Updated 8 months ago
- A simple REPL for Lean 4, returning information about errors and sorries.☆10Updated last year
- Formalisation of the Cambridge Part II and Part III courses Graph Theory, Combinatorics, Extremal and Probabilistic Combinatorics in Lean☆51Updated this week