winter1203 / vllm_GOT2_OCR
Accelerating GOT-OCRv2 with VLLM
☆9Updated 4 months ago
Alternatives and similar repositories for vllm_GOT2_OCR:
Users that are interested in vllm_GOT2_OCR are comparing it to the libraries listed below
- ☆26Updated 5 months ago
- ☆56Updated last year
- ☆14Updated last month
- Here is a demo for PDF parser (Including OCR, object detection tools)☆34Updated 5 months ago
- Datasets and Evaluation Scripts for CompHRDoc☆35Updated last month
- GOT的vLLM加速实现 并结合 MinerU 实现RAG中的pdf 解析☆51Updated 4 months ago
- 通用版面分析 | 中文文档解析 |Document Layout Analysis | layout paser☆46Updated 9 months ago
- A Simple MLLM Surpassed QwenVL-Max with OpenSource Data Only in 14B LLM.☆37Updated 6 months ago
- [Paper] Code for the EMNLP2023 (Findings) paper "Global Structure Knowledge-Guided Relation Extraction Method for Visually-Rich Document"☆17Updated last year
- This is the code repo for our paper "Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts".☆28Updated 2 weeks ago
- 研究GOT-OCR-项目落地加速,不限语言☆59Updated 5 months ago
- ☆82Updated 3 months ago
- Recursive Abstractive Processing for Tree-Organized Retrieval☆11Updated 10 months ago
- 视觉信息抽取任务中,使用OCR识别结果规范多模态大模型的回答☆27Updated 3 months ago
- 从零到一实现了一个多模态大模型,并命名为Reyes(睿视),R:睿,eyes:眼。Reyes的参数量为8B,视觉编码器使用的是InternViT-300M-448px-V2_5,语言模型侧使用的是Qwen2.5-7B-Instruct,Reyes也通过一个两层MLP投影层连…☆10Updated last month
- ☆36Updated 6 months ago
- chinese document classification of layoutlmv3 and layoutxlm☆43Updated 2 years ago
- official code for "Fox: Focus Anywhere for Fine-grained Multi-page Document Understanding"☆141Updated 10 months ago
- Qwen-WisdomVast is a large model trained on 1 million high-quality Chinese multi-turn SFT data, 200,000 English multi-turn SFT data, and …☆18Updated 11 months ago
- ☆29Updated 7 months ago
- ☆26Updated last month
- the newest version of llama3,source code explained line by line using Chinese☆22Updated 11 months ago
- Fast pdf translate是一款pdf翻译软件,基于MinerU实现pdf转markdown的功能,接着对markdown进行分割, 送给大模型翻译,最后组装翻译结果并由pypandoc生成结果pdf。☆12Updated last week
- 最简易的R1结果在小模型上的复现,阐述类O1与DeepSeek R1最重要的本质。Think is all your need。利用实验佐证,对于强推理能力,think思考过程性内容是AGI/ASI的核心。☆40Updated last month
- TianGong-AI-Unstructure☆62Updated last week
- Our 2nd-gen LMM☆33Updated 10 months ago
- 介绍docker、docker compose的使用。☆20Updated 6 months ago
- ThinkLLM:大语言模型算法与组件实现☆27Updated last week
- 1.4B sLLM for Chinese and English - HammerLLM🔨☆44Updated 11 months ago
- 中文论文、证券类、财报类PDF数据☆25Updated 9 months ago