wind91725 / gpt2-ml-finetune-
根据gpt2-ml中文模型finetune自己的数据集
☆44Updated last year
Related projects ⓘ
Alternatives and complementary repositories for gpt2-ml-finetune-
- lasertagger-chinese;lasertagger中文学习案例,案例数据,注释,shell运行☆75Updated last year
- Chinese Transformer Generative Pre-Training Model☆56Updated 5 years ago
- Pytorch model for https://github.com/imcaspar/gpt2-ml☆79Updated 3 years ago
- Chinese GPT2: pre-training and fine-tuning framework for text generation☆188Updated 3 years ago
- 中文生成式预训练模型☆98Updated 4 years ago
- 在bert4keras下加载CPM_LM模型☆51Updated 4 years ago
- 用bert4keras加载CDial-GPT☆38Updated 4 years ago
- A Sentence Cloze Dataset for Chinese Machine Reading Comprehension (CMRC 2019)☆126Updated 2 years ago
- ☆100Updated 4 years ago
- Chinese Language Generation Evaluation 中文生成任务基准测评☆246Updated 3 years ago
- Finetune CPM-1☆75Updated last year
- ☆73Updated 5 years ago
- Collections of Chinese reading comprehension datasets☆214Updated 4 years ago
- Unilm for Chinese Chitchat Robot.基于Unilm模型的夸夸式闲聊机器人项目。☆157Updated 3 years ago
- Modify Chinese text, modified on LaserTagger Model. I name it "文本手术刀".目前,本项目实现了一个文本复述任务,用于NLP语料的数据增强。☆211Updated last year
- Dataset and code for ``Long and Diverse Text Generation with Planning-based Hierarchical Variational Model (EMNLP 2019)``☆119Updated 4 years ago
- 基于transformer的指针生成网络☆92Updated 3 years ago
- 基于预训练模型 BERT 的阅读理解☆93Updated last year
- ChineseHumorSentiment, chinese humor sentiment mining including corpus build and mining nlp methods.中文文本幽默情绪计算项目,项目包括幽默文本语料库的构建,幽默计算模型,包括…☆113Updated 5 years ago
- 这是一个用于解决生成在生成任务中(翻译,复述等等),多样性不足问题的模型。☆46Updated 5 years ago
- ☆89Updated 4 years ago
- ☆37Updated 3 years ago
- 中文版unilm预训练模型☆82Updated 3 years ago
- 本项目使用云问科技训练的中文版UniLM模型对微博数据集进行自动标题生成。☆35Updated 7 months ago
- Bert finetune for CMRC2018, CJRC, DRCD, CHID, C3☆183Updated 4 years ago
- QA、CHAT、Task-Oriented简单的demo实现☆26Updated 5 years ago
- 使用BERT解决lic2019机器阅读理解☆89Updated 5 years ago
- 整理一下在keras中使用T5模型的要点☆171Updated 2 years ago
- CLUE baseline pytorch CLUE的pytorch版本基线☆73Updated 4 years ago