wenqiwenqi1 / neural-styleLinks
本代码加入了神经风格迁移中文注释,更易理解,同时新加入begin.py可直接运行调试。
☆46Updated 7 years ago
Alternatives and similar repositories for neural-style
Users that are interested in neural-style are comparing it to the libraries listed below
Sorting:
- 使用VGG19迁移学习实现图像风格迁移。☆159Updated 5 years ago
- tensorflow实现的深度学习应用和模型☆71Updated 6 years ago
- 快速风格迁移学习实践☆26Updated 7 years ago
- This is the demo of image style transfer using perceptual loss.☆208Updated 3 years ago
- A TensorFlow implementation of real-time style transfer based on the paper 'Perceptual Losses for Real-Time Style Transfer and Super-Reso…☆11Updated 6 years ago
- 北京大学软件与微电子学院《人工智能实践》课程项目第6小组,新加入APP功能,项目代码持续完善中。☆84Updated 5 years ago
- 基于深度学习的图像风格转换☆107Updated 8 years ago
- 基于pix2pix模型的动漫图片自动上色(keras实现) 2019-2-25☆108Updated 4 years ago
- 风格迁移三部曲☆546Updated 6 years ago
- Kang根据前辈们的代码用keras、pytorch改写的CNN图像风格迁移☆75Updated 4 years ago
- 【火炉炼AI】-深度学习系列文章☆45Updated 6 years ago
- CCF BDCI2019 多人种人脸识别 Baseline Pubilic LB 0.64+ (PyTorch)☆84Updated 5 years ago
- 神经风格迁移——基于keras实现(VGG19)2019-2-23☆10Updated 6 years ago
- ☆92Updated 6 years ago
- GAN 使用生成对抗网络生成新的图片样本☆82Updated 7 years ago
- 天池竞赛Baseline分享(2018广东工业智造大数据创新大赛——智能算法赛,线上0.921无调参)☆258Updated 5 years ago
- Python3/TensorFlow☆103Updated 6 years ago
- 人脸和动漫脸的互转☆47Updated 6 years ago
- 通过DCGAN生成动漫人物头像☆83Updated 6 years ago
- Tensorflow implementation of CycleGANs☆134Updated 7 years ago
- 一个面向初学者的,友好的Keras入门教程☆123Updated 5 years ago
- SSDSingle Shot MultiBox Detector目标检测算法基于tensorflow的实现☆101Updated 7 years ago
- GAN models with Anime.☆62Updated 5 years ago
- 京东 JDD 大赛 猪脸识别项目☆78Updated 6 years ago
- ☆59Updated 7 years ago
- ICPR 2018 挑战赛一:网络图像的文本识别 / ICPR 2018 挑战赛二:网络图像的文本检测☆42Updated 7 years ago
- machine-learning☆17Updated 5 years ago
- 爱奇艺多模态人物识别比赛,排名第四☆68Updated 6 years ago
- A tensorflow implementation for fast neural style!☆934Updated 7 years ago
- MTCNN提出了一种Multi-task的人脸检测框架,将人脸检测和人脸特征点检测同时进行。提出一个新的基于CNN的级联型框架,用于联和(joint)人脸检测和对齐;还设计轻量级的CNN架构使得速度上可以达到实时;提出一个有效的online hard sample mini…☆38Updated 6 years ago