uberwach / leveling-up-jupyterLinks
Leveling up your Jupyter notebook skills
☆78Updated 7 years ago
Alternatives and similar repositories for leveling-up-jupyter
Users that are interested in leveling-up-jupyter are comparing it to the libraries listed below
Sorting:
- Reproducible Data Analysis Workflow in Jupyter☆118Updated 6 years ago
- Using Project Jupyter for data science.☆259Updated 4 years ago
- Code for a workshop on statistical interference using computational methods in Python.☆225Updated 4 years ago
- Materials for PyCon 2017 presentation on optimizing Pandas code☆213Updated 5 years ago
- For the pandas tutorial at PyData Seattle: https://www.youtube.com/watch?v=otCriSKVV_8☆116Updated 3 years ago
- Machine learning with scikit-learn tutorial at PyData Chicago 2016☆128Updated 8 years ago
- Example Python DS project☆71Updated 6 years ago
- Materials for the "Advanced Scikit-learn" class in the afternoon☆165Updated 6 years ago
- 📈 Interactive comparison of Python plotting libraries for exploratory data analysis. Examples of using Pandas plotting, plotnine, Seabor…☆109Updated 4 years ago
- PyData NYC 2017: Pandas Head to Tail☆57Updated 7 years ago
- Materials for the pandas tutorial at PyData Chicago 2016☆55Updated 4 years ago
- Scikit-Learn Tutorial for PyData Seattle 2015☆136Updated 9 years ago
- Scipy 2017 scikit-learn tutorial by Alex Gramfort and Andreas Mueller☆286Updated 7 years ago
- Pandas tutorial for SciPy2015 and SciPy2016 conference☆142Updated 8 years ago
- Building Python Data Applications with Blaze and Bokeh Tutorial, SciPy 2015☆144Updated 10 years ago
- A short tutorial for data scientists on how to write tests for code + data.☆120Updated 4 years ago
- A Jupyter notebook to accompany Jake VanderPlas's "Statistics for Hackers" talk from PyCon 2016.☆76Updated 6 years ago
- Some examples of Altair plots☆92Updated 6 years ago
- ☆135Updated 5 years ago
- A centralized repository to report scikit-learn model performance across a variety of parameter settings and data sets.☆213Updated 7 years ago
- Material for Talk at PyData Seattle 2017☆168Updated 7 years ago
- ☆41Updated 8 years ago
- Code for my OSCON 2015 talk☆83Updated 9 years ago
- ☆317Updated 4 years ago
- Code material for a data science tutorial☆197Updated 8 years ago
- COMS W4995 Applied Machine Learning - Spring 18☆158Updated 6 years ago
- Code for CS570, Essentials of Data Science☆109Updated 7 years ago
- PyData, The Complete Works of☆298Updated 8 years ago
- code for my "stupid itertools tricks" talk from pydata seattle 2015☆153Updated 9 years ago
- Website and material for the FIXME course on Practical Machine Learning☆89Updated 7 years ago