supercoderhawk / DNN_CWSLinks
利用深度学习实现中文分词
☆62Updated 8 years ago
Alternatives and similar repositories for DNN_CWS
Users that are interested in DNN_CWS are comparing it to the libraries listed below
Sorting:
- Source codes and corpora of paper "Iterated Dilated Convolutions for Chinese Word Segmentation"☆135Updated 4 years ago
- 这是一个tensorflow使用的样例,改自于https://guillaumegenthial.github.io/sequence-tagging-with-tensorflow.html☆36Updated 8 years ago
- 中文文本自动纠错☆85Updated 7 years ago
- [Broken] A Chinese Question and Answer System☆51Updated 9 years ago
- 新词发现算法(NewWordDetection)☆92Updated 4 years ago
- 依存关系分析,NLP,自然语言处理☆85Updated 3 years ago
- 基于深度学习的自然语言处理库☆158Updated 6 years ago
- ☆121Updated 8 years ago
- BDCI2017-让AI当法官,决赛第四(4/415)https://www.datafountain.cn/competitions/277/details☆120Updated 7 years ago
- 新词发现算法(NewWordDetection)☆62Updated 7 years ago
- SMP2017中文人机对话评测数据☆107Updated 7 years ago
- A deep text classifiers library.☆37Updated 6 years ago
- Chinese segmentation simple by keras☆45Updated 7 years ago
- ☆61Updated 8 years ago
- 新词发现☆66Updated 11 years ago
- 基于RNN的中文分词☆26Updated 8 years ago
- 对中文分词jieba (python版)的注解☆93Updated 7 years ago
- 中文短文句相似读☆137Updated 7 years ago
- Code lab for NLP. Including doc2txt,tf-idf,cnn,text classify,hmm cws,crf ner.☆42Updated 7 years ago
- 基于gensim模块计算句子相似度☆122Updated 9 years ago
- self implement of NLP toolkit 个人实现NLP汉语自然语言处理组件,提供基于HMM与CRF的分词,词性标注,命名实体识别接口,提供基于CRF的依存句法接口。☆55Updated 7 years ago
- A (CNN+)RNN(LSTM/BiLSTM)+CRF model for sequence labelling.☆139Updated 7 years ago
- 新词发现 基于词频、凝聚系数和左右邻接信息熵☆122Updated 5 years ago
- keras sparse implement of margin-softmax☆100Updated 7 years ago
- 2018百度机器阅读理解竞赛☆27Updated 7 years ago
- python CRF++实现分词☆37Updated 7 years ago
- char_CNN_text_classification_Chinese2Pinyin,中文转拼音实例-基于字符的卷积神经网络-超短文本分类-主要代码为lc222的github项目,有HTTP访问等☆16Updated 5 years ago
- 基于字符训练词向量☆89Updated 7 years ago
- 基于TextRank和WordNet的中英文单文档自动摘要☆63Updated 9 years ago
- Entity Linking,识别给定文本中出现的命名实体(Named Entity),并映射到特定的知识库中唯一的实体。包括命名实体识别、消歧等工作。☆71Updated 5 years ago