sophgo / ChatGLM2-TPULinks
run ChatGLM2-6B in BM1684X
☆50Updated last year
Alternatives and similar repositories for ChatGLM2-TPU
Users that are interested in ChatGLM2-TPU are comparing it to the libraries listed below
Sorting:
- NVIDIA TensorRT Hackathon 2023复赛选题:通义千问Qwen-7B用TensorRT-LLM模型搭建及优化☆42Updated last year
- ☆90Updated 2 years ago
- ☢️ TensorRT 2023复赛——基于TensorRT-LLM的Llama模型推断加速优化☆50Updated last year
- simplify >2GB large onnx model☆63Updated 8 months ago
- 天池 NVIDIA TensorRT Hackathon 2023 —— 生成式AI模型优化赛 初赛第三名方案☆50Updated 2 years ago
- ☆49Updated 9 months ago
- 基于MNN-llm的安卓手机部署大语言模型:Qwen1.5-0.5B-Chat☆82Updated last year
- Run generative AI models in sophgo BM1684X/BM1688☆235Updated last week
- Explore LLM model deployment based on AXera's AI chips☆110Updated last week
- Transformer related optimization, including BERT, GPT☆17Updated 2 years ago
- qwen2 and llama3 cpp implementation☆46Updated last year
- Compare multiple optimization methods on triton to imporve model service performance☆52Updated last year
- llm-export can export llm model to onnx.☆303Updated 7 months ago
- 大模型部署实战:TensorRT-LLM, Triton Inference Server, vLLM☆26Updated last year
- Another ChatGLM2 implementation for GPTQ quantization☆55Updated last year
- 纯c++的全平台llm加速库,支持python调用,支持baichuan, glm, llama, moss基座,手机端流畅运行chatglm-6B级模型单卡可达10000+token / s,☆45Updated 2 years ago
- stable diffusion using mnn☆66Updated last year
- Large Language Model Onnx Inference Framework☆36Updated 7 months ago
- Model compression toolkit engineered for enhanced usability, comprehensiveness, and efficiency.☆85Updated last week
- Serving Inside Pytorch☆162Updated 2 weeks ago
- ☆42Updated last year
- 大模型API性能指标比较 - 深入分析TTFT、TPS等关键指标☆19Updated 11 months ago
- ☆26Updated 2 years ago
- ☆125Updated last year
- export llama to onnx☆131Updated 7 months ago
- run chatglm3-6b in BM1684X☆40Updated last year
- A high performance, high expansion, easy to use framework for AI application. 为AI应用的开发者提供一套统一的高性能、易用的编程框架,快速基于AI全栈服务、开发跨端边云的AI行业应用,支持GPU,…☆157Updated last year
- ☆121Updated 2 years ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago
- DeepSparkHub selects hundreds of application algorithms and models, covering various fields of AI and general-purpose computing, to suppo…☆65Updated this week