rmgarnett / active_gp_hyperlearning
Active learning of GP hyperparameters following Garnett, et al., "Active Learning of Linear Embeddings for Gaussian Processes," (UAI 2014).
☆15Updated 7 years ago
Related projects ⓘ
Alternatives and complementary repositories for active_gp_hyperlearning
- Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models.☆43Updated 10 years ago
- Fastidious accounting of entropy streams into and out of optimization and sampling algorithms.☆31Updated 8 years ago
- Stochastic Gradient Riemannian Langevin Dynamics☆33Updated 9 years ago
- The information sieve for discrete variables.☆36Updated 8 years ago
- Collaborative filtering with the GP-LVM☆25Updated 9 years ago
- An implementation of "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles" (http://arxiv.org/abs/1612.01474)☆34Updated 7 years ago
- Dirichlet Process Mixture using PVI, SMC, Variational☆15Updated 10 years ago
- Discriminant Projection Forest results, datasets, etc.☆44Updated 4 years ago
- Gaussian Process Random Fields☆21Updated 9 years ago
- Code for the icml paper "zero inflated exponential family embedding"☆29Updated 7 years ago
- Code for NIPS 2015 "Gradient-Free Hamiltonian Monte Carlo via Effecient Kernel Exponential Families"☆24Updated 6 years ago
- ☆12Updated 6 years ago
- Gopalan, P., Ruiz, F. J., Ranganath, R., & Blei, D. M. (2014). Bayesian Nonparametric Poisson Factorization for Recommendation Systems. I…☆15Updated 10 years ago
- Python package for inference with Gaussian processes☆11Updated 9 years ago
- Stochastic Gradient MCMC algorithms implemented in theano (and autograd)☆9Updated 7 years ago
- Code for Fast Information-theoretic Bayesian Optimisation☆16Updated 6 years ago
- ☆40Updated 5 years ago
- An iterative neural autoregressive distribution estimator (NADE-K)☆26Updated 10 years ago
- ☆12Updated last year
- Deep Gaussian Processes in matlab☆90Updated 3 years ago
- Variational Fourier Features☆83Updated 3 years ago
- Implementation of Trimmed Grassmann Average (TGA) by Hauberg S et al. in Python☆23Updated 9 years ago
- Scalable Log Determinants for Gaussian Process Kernel Learning (https://arxiv.org/abs/1711.03481) (NIPS 2017)☆18Updated 7 years ago
- Code for density estimation with nonparametric cluster shapes.☆38Updated 8 years ago
- Reducing Reparameterization Gradient Variance code.☆33Updated 7 years ago
- Code for Kernel Adaptive Metropolis-Hastings☆33Updated 9 years ago
- Randomized output tree for multilabel / multi-output regression tasks☆23Updated 8 years ago
- Efficient Dirichlet process clustering☆26Updated 11 years ago
- Rudi, A., Camoriano, R. and Rosasco, L., Less is more: Nyström computational regularization. In Advances in Neural Information Processing…☆12Updated 5 years ago
- Repository for Chained Gaussian Processes☆14Updated 8 years ago