rmgarnett / active_gp_hyperlearning
Active learning of GP hyperparameters following Garnett, et al., "Active Learning of Linear Embeddings for Gaussian Processes," (UAI 2014).
☆15Updated 7 years ago
Alternatives and similar repositories for active_gp_hyperlearning:
Users that are interested in active_gp_hyperlearning are comparing it to the libraries listed below
- Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models.☆43Updated 11 years ago
- Stochastic Gradient Riemannian Langevin Dynamics☆33Updated 9 years ago
- Gopalan, P., Ruiz, F. J., Ranganath, R., & Blei, D. M. (2014). Bayesian Nonparametric Poisson Factorization for Recommendation Systems. I…☆15Updated 10 years ago
- Repository for Chained Gaussian Processes☆14Updated 8 years ago
- Collaborative filtering with the GP-LVM☆25Updated 9 years ago
- Dirichlet Process Mixture using PVI, SMC, Variational☆15Updated 10 years ago
- modular implementation of new algorithm☆13Updated 10 years ago
- Bayesian optimization with the Gaussian process assumption☆30Updated 8 years ago
- The information sieve for discrete variables.☆36Updated 8 years ago
- Randomized output tree for multilabel / multi-output regression tasks☆23Updated 9 years ago
- An iterative neural autoregressive distribution estimator (NADE-K)☆26Updated 10 years ago
- Bayesian optimization in high-dimensions via random embedding.☆113Updated 11 years ago
- Deep Gaussian Processes in matlab☆91Updated 3 years ago
- Python implementation of Markov Jump Hamiltonian Monte Carlo☆24Updated 8 years ago
- Variational Fourier Features☆83Updated 3 years ago
- Unsupervised feature learning based on sparse-filtering☆55Updated 10 years ago
- an implementation of latent Dirichlet allocation (LDA) with stochastic variational inference☆20Updated 8 years ago
- Code for Fast Information-theoretic Bayesian Optimisation☆16Updated 6 years ago
- Discriminant Projection Forest results, datasets, etc.☆44Updated 5 years ago
- Fastidious accounting of entropy streams into and out of optimization and sampling algorithms.☆32Updated 8 years ago
- Vector-Space Markov Random Fields☆21Updated 9 years ago
- Boosting and ensemble learning in Python.☆54Updated 9 years ago
- Scalable Log Determinants for Gaussian Process Kernel Learning (https://arxiv.org/abs/1711.03481) (NIPS 2017)☆18Updated 7 years ago
- AAAI & CVPR 2016: Preconditioned Stochastic Gradient Langevin Dynamics (pSGLD)☆35Updated 6 years ago
- Code for density estimation with nonparametric cluster shapes.☆38Updated 8 years ago
- Code for the icml paper "zero inflated exponential family embedding"☆29Updated 7 years ago
- A collection of Gaussian process models☆30Updated 7 years ago
- MLSS 2016 material.☆22Updated 8 years ago
- A simple tool for small scale experiments using bayesian optimization☆35Updated 6 years ago
- Sklearn implementation of GBM to predict mu(X) and std(X) on heteroscedastic data☆26Updated 8 years ago